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Abstract

An analyzes of efficiency of 3–dimensional ionization
cooling of muons is performed with use of transport equa-
tion approach in a scheme with bent lithium lenses and high
field dipoles.

As it was already shown [1,2,3], the ionization cooling
is efficient for transverse beam emittances and not at all for
the longitudinal one. The natural longitudinal decrement
is equal to the derivative of mean rate of energy loss with
respect to particle energy. In a region of logarithmic grow
of ionization loss, the value ofδ‖ does not exceed 7% of
δ⊥, whereas at momentum below∼ 400MeV/c, where
δ‖ is negative, its absolute value grows fast with energy
decrease and becomes of the order ofδ⊥ atpc ∼ 100MeV ,
thus resulting in a strong heating of muon beam instead of
cooling.

Meanwhile, with no efficient cooling of longitudinal
emittance, the energy spread in a beam is growing, and
chromatic aberration in a lens, matching the amplitude
functions of low-beta focus at slowing target and that of
rather long-wave accelerator, results in sufficient increase
in transverse emittance, which restricts from below its
value, achievable without an efficient cooling in longitu-
dinal direction.

Thus, the violent redistribution of summary decrement
between transverse and longitudinal degrees of freedom
has to be produced in a system for ionization cooling by
way of creation of transverse gradient of energy loss rate,
correlated with dispersion function.

With the use of transport (kinetic) equation for ionization
cooling of muons [1] a system of differential equations is
got for definition of mean square characteristics of particle
beam and all correlations between them:〈r2〉, 〈rθ〉, 〈θ2〉,
〈∆E2〉, and so on.

In common the full number of equations is rather big,
and solution is to be got numerically. However, for anal-
ysis we can consider the free transverse motions and the
longitudinal one separately.

For free radial motion, which is extracted through a
change of variablesρ = r − ψ∆Epv andϑr = θr − ψ′

∆E
pv ,

the equations read:
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∂s
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σ2stψ

2
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Hereψ andψ′ are the dispersion function and its deriva-
tive, kr = k + 1

R20
with k = e

pc
dH
dr

; σ2st stands for
the mean square straggling of ionization loss of energy;
E2k/X0 = 4πe

4(Z+1)neLc defines the mean rate for mul-
tiple Coulomb scattering with logarithmic factorLc, calcu-
lated for an effective depth of cooling mediums

eff
= 1
2δ0

;

δ0 stands for the natural transverse decrementδ0 =
ξ
pv

,

whereξ = −
(
dE
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)
ion

, while δr is the real radial decre-
ment

δr = δ0

[
1− ψ

(
η +

1

R

)]
.

Hereη = 1
ξ
∂ξ
∂r

presents the radial gradient of energy loss
rate,R is the beam line curvature radius.

The equilibrium radial emittance, got from (1) in a form:

εr,eq =
E2kβr

2δr(pv)2X0

(
1 +

ψ2

β2r

γ2 + 1

(Z + 1)Lc

)
, (2)

gets an increase, caused not only by the decrement re-
duction, but also by an influence of the energy loss strag-
gling. This puts a limit for dispersion function magnitude

ψ < βr

√
(Z+1)Lc
γ2+1 , which means, for instance,ψ < 3βr at

particle momentum∼ 200MeV/c.

The equations for mean square characteristics of longi-
tudinal motion are:
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Hereδ
L

denotes the longitudinal decrement:

δ
L
= ξ′ + δ0ψ

(
η +

1

R

)
, (4)

being a sum of natural longitudinal decrementξ′ and a frac-
tion, transferred from the radial direction.
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The equilibrium longitudinal emittance and mean square
energy spread are found as:

ε
L,eq =

σ2st
2pvδ

L

β
L
, ∆E2eq ∼=

σ2st
2δ
L

with β
L

in expression forε
L

being an amplitude function
for longitudinal motion, defined as:

β
L
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√
pvλ̄
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[
1
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1
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(
1− γ2

ψ

R

)]
(5)

when degrader and accelerator units succeed each other.
Here eε0 is an acceleration rate, and̄λ = λ

2π tgϕa with
λ being a wave length of accelerating voltage andϕa – an
acceleration phase.

Having got expressions for transverse and longitudi-
nal emittances, we can evaluate the ultimate value of 6-
dimensional equilibrium emittance, achievable by the use
of bent current-carrying rod focus with optimized param-
eters. An optimization is applied, first of all, to the rod
radiusr0 and to the productψη∗(η∗ = η + 1

R
). With

fixed magnitude of magnetic field at the rod surfaceHm,
restricted by a value of10÷ 20T [4], the magnitude ofr0
defines the maximum achievable field gradient. From the
other side, it is to be large enough to satisfy an evident re-
lation r20 > 〈r

2〉 = εr,eqβr + εz,eqβz . The ultimate value
of r

0
, with supposed valid a relationδr ∼= δz, is found as:

r
0,ult
= R2tβ

mc2 (Z + 1)Lc
eHmLi

/(
1−

ψη∗

2

)

HereRt is a ratio of rod radius to r.m.s. size of particle
beam,β denotes the particle velocity inc units, andLi –
the logarithmic factor in the mean rate of ionization loss.

Optimization ofψη∗ consists in maximization of a prod-

uct Π =
(
1− ψη∗

2

)3 (
ψη∗ + ξ′

δ0

)
, which the ultimate

6-dimensional emittance is inversely proportional to, ow-
ing to the products of decrements and of transverse beta-
functions (β⊥ult ∝

√
r
0,ult

). The optimum value ofψη∗

appears to be:(ψη∗)opt = 1
2 −

3
4
ξ′

δ0
and decrements corre-

lation: δr = δz = 3
2δL =

3
8δΣ .

Resulting expression for the ultimate value of normal-
ized 6-dimensional emittance reads:

ε
(6)
ult,N =

16

27

(
Rt

Hm

)2
m4c4(Z + 1)3L3cγ(γ

2 + 1)

e2M2β3(Li + 2)4
β
L
. (6)

Near its minimum, atpc ∼= 100MeV/c, the value ofε(6)eq,N
is estimated as

ε
(6)
ult,N

∼= 1.4 · 10−5
(
Rt

Hm

)2√
λ̄
1

eεeff
cm3

with Hm to be taken inTesla, λ̄ – in cm andeεeff – in
MeV/cm. Denoted with 1

eεeff
here is an expression in

Figure 1: Degrader unit.

square brackets in (5). WhenRt ∼= 2.5 (r0 ∼= 3.5σ⊥),
Hm
∼= 10, λ̄ ∼= 1.6 (λ ∼= 10 cm, tg ϕa ∼= 1) andeε0 ∼= 1,

the ultimate value of 6-dimensional normalized emittance
ε
(6)
ult,N is got equal to∼ 1.2 · 10−6 cm3 .

At particle momentum200MeV/c, and with more mod-
erate accelerator parameters –λ̄ ∼= 5cm and eεeff ∼=
0.5MeV/cm – this value is:∼ 4 · 10−6 cm3 .

As a beam line for 3-dimensional cooling we consider
that composed of bent current-carrying rods of lithium with
wedges of more heavy material inserted between them.
When a length of lithium rod isl, and wedge length (by the
bottom) –∆l, this is equivalent to creation of an effective

density gradient with a relative valueηeff =
(
1
ne

dne
dr

)
eff

∼=

1
r0

ne,w∆l
2lne,li+∆lne,w

·

A choice of material for wedges is limited by a necessity
of low nuclear number, so that the beryllium and carbon
seem to be practically the only candidates.

The length of wedges is also restricted by the betatron
function modulation arising. The ratio∆l/l practically can
not be taken more than∼ 0.2, and thus the productψηeff
appears to be far from optimum.

It is possible to amplify the effect of wedges, by increas-
ing the dispersion function at them. This is achieved when
between two subsequent wedges the beam gets a parallel
shift (see fig. 1). Whenνϕ0 = 2

3π, for instance, the
absolute value ofψ at wedges is by 3 times larger than
the average value in a rodR/ν2. By that, with wedges
made of beryllium, the value of∆l/l for optimumψηeff by
H0 ∼ Hm is estimated equal to∼ 0.14 at beam momen-
tum200MeV/c.

Cooling of 200 MeV/c momentum muons in a beam line,
composed of such degrader units, separated with linear ac-
celerator sections, compensating the mean lost energy, is
illustrated in figure 2. Curves 1 and 2 show, accordingly,
the radial and axial normalized emittances inMeV/c cm
and 3 – the longitudinal emittance inMeV cm versus the
number of degrader-accelerator cells. Thin lines present
the numerical solution of system of equations, got from the
transport equation [5], while the thick ones – the result of
simulation with Moliere formulae used for the Coulomb
scattering angle distribution , and Vavilov formulae – for
that of the energy loss.

Dashed line shows the ratioRt, got from the numerical
solution, while the dashed squares at figure bottom show
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Figure 2: Cooling of 200 MeV/c muons.

the particles (from 100 initial), found lost by the simula-
tion.

Both dipole and maximum focusing fields are taken
equal to10T , acceleration rate – to0.5MeV/cm, and λ̄
– to 5cm. The initial r.m.s. momentum spread is±4.5%
and longitudinal coordinate –±1cm.

The rod radius is gradually reduced with beam cooling
from∼ 8mm down to∼ 3.5mm, which provides with al-
most constant value ofRt, equal to∼ 2.5(r0 ∼= 3.5σ⊥).
The rod length is also decreased in proportionality with√
r0 to keep constant valueνϕ0 = 2

3π.
The final radial emittance is more than two times larger

than the axial one, which proves, that more than half of ra-
dial decrement is transferred to the longitudinal direction.
The initial longitudinal emittance is taken close to the equi-
librium value and thus only slightly decreases with cooling.

The magnitude of normalized 6-dimensional equilibrium
emittance, got in the end of 40-cells cooling, is equal to
∼ 4.5 · 10−6 cm3 in good accordance with estimation (6).

To avoid a significant difference in equilibrium values
of radial and axial emittances by close to optimum transfer
of decrement, the degrader units can be turned around the
longitudinal axis through90◦ several times over length of
cooling. Figure 3 shows the result of such a procedure,
performed after each eight cells.

The dipole fieldH0, providing the beam bend, can be
produced in a way, presented in fig.4. Here the lithium rod
of radiusr0, is disposed inside a conducting rod of enlarged
radius, being shifted from its central line in direction to
the bend center. The residual part of enlarged rod, being
supplied with a current, produces a homogeneous dipole
field inside the lithium rod. By supplying in series, to get
the necessary correlation between the dipole and focusing
fields, the inner rod is connected to cylindrical envelope,

Figure 3:

Figure 4: Current carrying rod with dipole field

which shunts necessary part of current.
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