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Abstract

An equivalent wall impedance is introduced to describe the
electromagnetic boundary conditions at perforated walls,
which together with general perturbational formulae can be
used to provide accurate analytical estimates of longitudi-
nal and transverse beam coupling impedances in complex-
shaped partially perforated pipes.

1 INTRODUCTION

The effect of (a huge number of) pumping holes on
beam dynamics and stability, described in terms of cou-
pling impedances, is a fundamental issue and has been
carefully investigated, both theoretically [1] and experi-
mentally [2].

With the exception of a few very simple pipe geometris,
for which the modal expansion of the electromagnetic field
is available, beam coupling impedances can be only com-
puted numerically.

In [3] we developed a general (reciprocity-based, per-
turbative) analytic approach for computing the (longitudi-
nal and transverse) beam coupling impedances in complex-
shaped, heterogeneous pipes, where the local wall proper-
ties are described in terms of impedance boundary condi-
tions. In this communication we introduce such a boundary
condition for a perforated wall, and discuss a number of
relevant generalizations, thus extending the applicability of
the aforementioned analytic approach to perforated pipes.

In Sect. 2, we review the perturbative formula for
computing the longitudinal beam coupling impedance in
a complex-shaped, heterogeneous pipe. In Sect. 3 a per-
forated wall impedance boundary condition is obtained by
solving an appropriate canonical boundary value problem.
In Sect. 4 we introduce a modified polarizability, to ac-
count for the effect of an external co-axial shield, for an
infinite pipe or a large ring. In Sect. 5 a few possible re-
finements are discussed. Concluding remarks follow under
Sect. 6.

2 COUPLING IMPEDANCES IN
COMPLEX PIPES

The longitudinal beam coupling impedance of
a simple(e.g., circular and perfectly conducting) pipe can
be related to that , of anotherpipe differing from
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the above by someperturbationin the boundary geometry
and/or electrical properties as shown in [3]:

(1)

where is the cross-section boundary, with (outward)
unit normal vector , and an impedance (Leont´ovich)
boundary condition

(2)

describes the (perturbed, local) electrical pipe wall prop-
erties. In (1), , and are the vacuum speed of
light, characteristic impedance and permittivity, respec-
tively, is the relativistic factor, is the total beam charge
, , are the solenoidal and irro-
tational parts of the electric field produced atby a line
source through in the unperturbedpipe. The first inte-
gral term on the r.h.s of (1), describes the effect of the per-
turbations in the wall electrical properties, and is nonzero
if and only if on . The second integral term on
the r.h.s. of (1), on the other hand, accounts for the effect of
the geometrical boundary perturbations, and is accordingly
non-zero if and only if theunperturbedaxial field compo-
nent is not identically zero on .

3 AN IMPEDANCE B.C.
FOR PERFORATED WALLS.

Consider a plane wave incident with a nearly-to-
grazing angle ( ) on a conducting plane at
bearing a regular array of holes at ,

.
The assumed incident field is similar to the one pro-

duced by a relativistic particle beam running parallel to
the perfectly conducting wall: the magnetic field is nearly-
tangent to the wall, the electric field is nearly normal, and

. In this section, following a general proce-
dure discussed e.g. in [4] and applied in [5] we shall deduce
from the appropriate reflection coefficient, an equivalent lo-
cal impedance b. c. to describe the perforated surface.

The field in is the superposition of the incident

1324



field:

(3)
the field reflected from theunperforatedconducting plane

,

(4)
and thescatteredfield , produced by elementary
sources (Bethe’s approximation [6]) assumed as radiating
in free space (image theorem):

(5)
where , are the (internal) electric and magnetic hole
polarizabilities1.

The scattered field can be readily computed from the
vector ( ) and magnetic-Hertz () potentials,

(6)

solving the wave equations:

(7)

Using the (generalized) Fourier representation:

(8)

in (5), the (weak) solutions of (7) can be written as super-
positions of plane waves:

(9)

propagating in the grating-lobe directions, with

(10)

and2 :

(11)

1The polarizabilities for several hole shapes can be found in [7].
2All terms with in (9) decay exponentially off the

plane, in the limit , as seen from (11).

The term in (9) propagates in the specular direc-
tion. The corresponding magnetic field :

(12)

can be used to compute the reflection coefficient:

(13)

By comparison with the well known formula3

(14)

which gives the (magnetic) reflection coefficient at the
boundary between half spaces with characteristic oblique
impedances (incident wave half-space) and , letting,
in view of (3), , we get:

(15)

which, for near-to-grazing incidence is4:

(16)

where is the hole surface-density. As a con-
clusion, we can state that for near-to-grazing incidence, a
plane perforated conducting surface can be described us-
ing an impedance b.c., with wall-impedance given by (16).
Moreover, according to the general theory formulated in
[8], provided the further condition:

(17)

is satisfied, where is the (local) smallest radius of cur-
vature of the perforated surface, then an impedance b.c.
with wall-impedance can still be used for anon-planar
perfectly conducting perforated surface.

4 BEAM COUPLING IMPEDANCE
IN PERFORATED PIPE

FROM IMPEDANCE B.C.

Let , i.e., assume (uniformly
spaced) holes per unit pipe lenght5, located at ,
being the arc-lenght along the pipe cross-section contour.
Then, from (1) and (16),

(18)

where , being the (nor-
mal) electric field produced by an axial beam with total
charge at the hole’s position. Equation (18) reproduces
Kurennoy’s result valid for this (most) general case, ob-
tained using a different rigorous (modal) approach [9].

3The approximate equality holds to lowest order in the ratio ,
assumed suitably small.

4In the near-to-grazing incidence limit we still assume that
.

5For the very definition of beam impedance to apply, the holes should
be (at least piecewise) uniformly-distributed in the longitudinal direction.
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5 PERFORATED BEAM PIPE
IN A CO-AXIAL SHIELD

For an infinitely long (or equivalently, a large6 annular)
perforated beam pipe surrounded by a co-axial shield (e.g.,
the LHC cold-bore) eq. (16) still holds, provided the fol-
lowing modifiedpolarizabilities are used in place of :

(19)

where the superfix identifies theinternal andexternalhole
polarizabilities, and

(20)

where is the complex EM penetration depth into the ex-
ternal beam pipe and internal coaxial shield surfaces,is
the (complete) contour of the co-axial region cross-section,

is the TEM eigenfunction in the co-axial region, is
the transverse hole position, and the longitudinal hole
density.

Equation (20) is a generalization of a result by Gluck-
stern [10], valid for the circular co-axial geometry, and is
readily established [11] by computing the field in the co-
axial region produced by a longitudinally periodic array of
holes at , , and , and letting

(21)

where , are the pipe and co-axial region
fields, and is independentof , as a consequence of prob-
lem’s linearity and invariance under the group of longitudi-
nal shifts by multiples of .

6 THICK-HOLES AND MORE

It is relatively straightforward to include e.g. the ef-
fect of i) a non-zero wall thickness; ii) the electromagnetic
coupling among the holes . Internal and external electric
and magnetic polarizabilities ofthickholes have been com-
puted by Gluckstern [12]. Coupling among the holes can
be accounted by using theeffectiveelectric polarizabilities

of a hole belonging, e.g., to an infinite, regular planar
hole array:

(22)

where [5]:

(23)

being the interhole spacing, and being the Bessel
function of the kind7.

Note that all corrections to the hole polarizabilities
should be gauged consistently against the omission [13] of
terms of higher order in in the standard no-
thickness, no-coupling (Bethe’s) formulae for .

6Bunch lenght ring circumference.
7Equation (23) is obtained in the quasi static ( )

assumption.

7 CONCLUSIONS AND HINTS FOR
FUTURE RESEARCH

A simple impedance boundary condition which can be
used to compute the beam coupling impedance in partially
perforated pipes with complicated geometries in analytic
form has been introduced.

Possible hints for future work include the statistical char-
acterization of the beam coupling impedances for (trans-
versely) random-placed holes, the formulation of higher or-
der (variational) coupling impedance perturbation formu-
las, and the possible use of higher order impedance bound-
ary conditions. Work in these directions is in progress.
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