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Abstract results.

In [1], Kikutani uses a two-particle model to demonstrate
the existence of a “head-tail” instability caused by the prest 1 Eigenvalue System
ence of a feedback system. This paper demonstrates that
this instability is a general feature of storage rings witl3egin with the Fourier analyzed Vlasov equation. In ob-
a transverse low-frequency feedback system which damfgining this, one has assumed that one can normalize the
the rigid (m=0) modes but attempts to leave the head-tdilamiltonian consisting of the lattice without collective ef-
(m=1) modes unaffected. The growth rate is an effect dects plus potential well distortion. The action-angle vari-
transverse mode coupling, but doesn’'t have a threshok@bles of this system aré and@. The Vlasov equation is
The growth rate increases quadratically (or even cubicalljien Fourier analyzed in turn number (frequefiyand@
under some assumptions) with current for small currenféidexm). Multiple bunches are allowed, but for simplic-
for a given feedback gain. For low gains, the effect is linedify the equations are given assuming that all bunches have
in the feedback gain. The formulation given is based on#e same charge and are symmetrically placed. This is not
Vlasov equation analysis, incorporating an impedance-likessential to the method.
representation for the feedback system [2]. The associatedn addition, any tune shift with amplitude in the normal-
growth rates for then = 1 modes can be computed inized Hamiltonian is ignored. Adding tune shift with am-
the presence of an arbitrary impedance and feedback trapsitude changes the character of the eigenfrequency spec-
fer function. In general, one needs to consider impedanteim, and a different analysis is required. The analysis
together with the feedback system to get the correct efiere holds to the extent that the frequency shifts from their
fect; ignoring the impedance will give the incorrect resultzero-current values are large compared to the nonlinear fre-
The effects can be computed just as easily for a symmetiggiency spread.
multibunch system as for a single-bunch system. With these assumptions, the eigenvalue equation can be
written

1 INTRODUCTION

This paper approaches the analysis of the stability of the
beam in a circular storage ring under the influence of col-
lective effects and feedback using the Vlasov equation. i(2m)
An equilibrium distribution of particles is assumed, and
perturbations to that distribution are Fourier analyzed in
turn number. The resulting equations will only have self- [ ZFB_( J s 35, wﬁ)e—iﬁwo(s—g)/ﬂcq,mp(i 5)dJ ds
consistent solutions for certain eigenfrequencies. If thes
eigenfrequencies have positive imaginary parts, the system + / Zmm (I, I, 8,w05) Uiy (J, 5) dJ_} @
is unstable.

The question to be addressed is what effect a transverse
feedback system has on these eigenvalues in addition Heregc is the velocity of a particle with chargeand mass
the desired effect, namely to providensgativeimagi- m, following the ideal orbit of lengthL. wy is the angu-
nary part to one of the eigenvalues (the “rigid bunch” ofar circulation frequency for that ideal particley is just
“m = 0" mode). It turns out that except in exceptional(l — 3?)~1/2. There areM bunches with\V charges in
circumstances, the feedback system will introduce a posach bunch. The frequencies of oscillation for a single par-
itive imaginary part into at least one of the “head-tail” orticle in the field of the lattice plus potential well distortion
“m = 1" modes, creating a potential instability. (due to an equilibrium distributiof(J)) arew. Q is the

The paper will first introduce the equations describingigenvalue which we're trying to find, with eigenfunctions
the system in a fairly general form. Then the necessa¥fm;(J,s) which are periodic ins. w,, is a shorthand for
perturbation theory will be briefly reviewed. Finally, somepwo + 2.
standard simplifications of the eigenvalue system are given, The functionZ,,..(J,J, s,w) represents the interac-
which will allow one to easily apply the perturbation theorytion due to passive objects described by an impedance; it
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is defined to be 2 PERTURBATION THEORY

D (T, T 5,0) = Now one must break the eigenvglue equation (1) into a “l_,m-
P perturbed” part plus a perturbation part. The perturbation
Z 2o (W, 8)Yom(J,w, s)Y . (J,w,s) (2) will consist of the feedback term plus the impedance terms
o for which m # . The reason for not using the zero-
current system as the unperturbed system is that it is desir-
Here z.(w, s) is the impedance of type per unit length  5pe to be able to do nondegenerate perturbation theory: for
at the points. For example, it might be the transversezerg current, all the radial modes corresponding to a single

impedance per unit length, or the longitudinal impedancg;imuthal mode index have degenerate eigenfrequencies.
per unit length multiplied bydc/w. Y,.,, is defined to be

Yo (J,w,8) = 2.1 Nondegenerate Perturbation Theory

1 ) ,
(2 )3 /fa(Ju 0’ S)ezwz(J,B,s)/ﬁce—zm-BdSG (3)
s

Begin with a matrixA with eigenvalueg; and correspond-
ing eigenvectorsy, such thatdwy, = &w. Assume that
the & are all different. There are also vectaifg such

and Y, is the same except witlfi, replaced byg,. f, that @,:wg = Jre. Say we want to find eigenvectors and

andg, are part of the definition of the impedangg: mul- ~ €igenvalues forl + €B, wheree is small. Denote the new

tiplied by 2., (or really its Fourier transform, the wake func-&igenvectors and eigenvalues throlght eB)vi = Axur,

tion) multiplied by the integral of,, times the distribution and writeA; andv;, as power series ia

gives a function whose gradients are the collective force on

a test charge. For example, for a transverse wake, hoth  Ax = Z Aeee’ vp = Z vpee’ = Z Chtm€ W (7)

andg,, would be the coordinatgwritten in terms of action- ¢ 4 em

angle variables. For a longitudinal wake, bgthand g,

would be 1. The function in the exponent is just the ar- Then equate equal powers ©and multiply by}, in the

rival time relative to the arrival time a particle following the Original eigenvalue equation, and choose = ¢ and

ideal orbit, multiplied by—Sc. Uk = Wk Assuming nondegeneracy, the first few coeffi-
Transverse wakes are of particular interest for this pap&fi€nts are:

and bothY,,,, (J,w, s) andffam(L w, s) for that case are

- W} Bw
Akl = w;LBwk Ckim = §km—§ u (1—"6rm) (8)
1 [ APy (s)+mAYz (s \m ~ ~ m
o 27,8, (s)e AV () “l(i) g — Z Wy, Bwjw; Bwy, )
J ((w Fwe)oz(s) 2Jzﬁ'quc> @) ik §e — &
pe € (0 Su) Z wIanjftD;Bwk
Ck2m = — Okm
m = (0,%1,m) here. Ay, .(s) are the phase advance at J#k (& = &) (& = &m)
a points relative to a phase linearly advancing witho is W}, Buwy ] Buwy
&,wy/n, &, is the chromaticityy is the frequency slip fac- - 75_—5)2 (10)
tor (positive above transitiony;,, is the r.m.s. bunch length Bsm
(in dimensions of length), ang is the r.m.s. longitudinal wLBwju?TBwnu?LBwk
emittance in energy-time units. ks = Z (G — §j Y& — &)
The functionZE2.. (J, J, s, 5,w,) represents the inter- ik " !
action due to the feedback system. It can be written as ; ; ;
B Z kawku?kaju?ijk (11)
Z"rzr?m(‘]a J_a S, S, W) = Ak (Ek _5],)2

> 2B (w, 5, 8)Y (I, w, 8)Yam (T, w,5)  (5)
o 2.2 Feedback

Here z,(w, s, 5) is the Fourier transform of the feedbackOne can now use this perturbation expansion to find the
response per unit length aper until length of pickup at. ~ eigenvalues in the presence of azimuthal mode coupling
The equations are somewhat simplified if one assumes tHaitd feedback. Assume that the mode to be damped by the
ZFB_ can be written in the form feedback system i = 0.

Examine each order in perturbation theory. To first order,
Ao shifts byewngo. This is the intended effect of the
feedback system, and therefabBeis generally chosen so

Zfr?ﬁz,(‘]ﬂ _’
~FB T = iwAs(s c
Zrn (T, T, 5,w)d (5 — 5 — As(s))e (/B (8) that this is a pure negative imaginary number. The second

8, 8,w) =
W
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order terms give assumed, in practice, even with a very narrow band feed-
back system such as that used in the LHC, this is not the
Ny — Z UNJ(T)BwkUNJ;TcBwo Ny — UNJ;TcBonNJ(T)Bwk case, and the second order term dominates.
- o — &k h2 & —&o Finally, this discussion assumes that the feedback has no
direct effect on the modes other th&n= 0 (neglecting
If there were no feedback, these would just give the stani By, for k # 0). Such a feedback system would have to
dard mode coupling effects; for a single bunch with wakehave a rather large bandwidth: it must have gain at frequen-
fields lasting less than one turn, these would be purely regies higher than those corresponding to the bunch length.
sincew] Bwy = — [} Bwy,]*.
With a feedback system, one can writle= B, + By, 3 EXAMPLE: GAUSSIAN BUNCHES

Bz being the term from the impedandgr coming from

the feedback. For a feedback system where the feedbat €igenvalue problem for transverse impedance and
response is for a short time, and when the feedback is d€€ddack can be simplified by ignoring a) terms due to the

signed to only give damping to the — 0 mode, one finds * variation of the impedance and feedback; b) coupling be-

thatw] Bpuwo = [ Brwg]*. Thus, there are terms iy, ~WEeN modes nedt = +w, and modes nedl = —w,;

which for a single bunch would be purely imaginary due t&"d €) terms which are at least first ordekjfi., the ra-
the opposite symmetries &fr and B: tio of the transverse to longitudinal emittance. Under these

assumptions, the transverse eigenvalue problem becomes

k0

’UNJ;LBFU}O?IJ(];BZwk + UNJ;LBZwoﬁJ(T)BFU}k

2
& — &o (12) (Q—wy — mws)Vpgp = —i% Z
Finally, the dominant contribution of the feedback to the p=p+p'M
third order term is [(ByZ1(wp)) + By(ZTB(wp)e™ PAS/Be)]
Mg = @ Bwow] Bwyw) Bwy, _ oo 13) | hme(wp) B f(wp) Vg, (14)
(& — &0)? & — &o For Gaussian bunches, thg,, are [4]

There is also an additional term which doesn’t i_nvolvehmz(w+w£) _ 1 ( oW >m+§f02w2/2ﬁ2c2
the feedback, as well as an additional effect\grnwhich 01(m + 0)! \V20¢

should be small compared to the first order effect.
To find the growth or damping rate in the higher order

mode due to the feedback system from these third order | N€ €igenfunctions of the “unperturbed” problem wil
terms, multiply the growth rate for ther — 0 mode by of course vary depending on what the impedance is. How-

the shift in the higher order mode due to azimuthal mod&"e". Pecause the impedance is generally dominated by fre-

coupling divided by the separation between the two modeguencies which are small or comparable to the frequencies

With mode coupling, the mode frequencies generally al5:_orresponding to the bunch length, one can safely consider

proach each other more rapidly with increasing currentthac?'Ply thelf - 0 terms in (14),’ and the r'esults will be cor-
they would if there were no mode coupling. Thys and rect to within about 20%. Since there is only one term for

¢ — & will have opposite signs (they are complex num& givenm, one can immediately obtain estimates of this

bers in the multibunch case, so this is really “their comple?ﬁeCt'

phases differ by around’). Therefore a feedback system In th? _LHC’ for example, the secqnd order terms domi-
which damps thex = 0 modes will cause the higher orderNate, giving growth rates which are in the range of 10000-

modes that it couples to to grow! In the single bunch casd0000 turns (see Figs. 5 and 7 of [5], comparing to Fig. 3).

wherem — 0 andm — 1 are coupled, this is exact (OneThis is roughly a factor of 4 slower than what one expects
must be careful with synchro-betatron modes [3]: theg, to b_e able to tolerate because of !_andau damping.
m — 0 mode does not give instability when approaéhin% Finally, note that the perturpauqn theory arguments are
the —w, m = 1,3,... mode, and a feedback system will ery general, and apply to longitudinal as well as transverse
damp these modes as well: if the modes give instabili"Pedances and feedback.
when coupling, then the feedback system will cause insta-
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