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Abstract
. - P, 22 _ Fy (ta 0)
The computer algorithm has been developed to study both g — Ewﬁ tyTrg = oy 1)
longitudinal and transverse microwave instability problems
of an intense ion beam for synchrotrons and storage rings. o= dy — Qu ~ )
The simulation method is presented. dt
. . 0Q .,
1 INTRODUCTION Qowo(l =) Fwef + Qowo 7y 5538

Rerexs andip = dzg/dt - the transverse particle coordi-

The presence of a large number of particles in the bea ‘ d velocity with t 1o th ibri bit-
leads to collective phenomena in circular accelerators ang'e and velocity with respect to the equitiorium orit,
article angular velocity() - particle betatron tunej -

storage rings [1]. In consequence the dynamics of particl el imuthal tion in th hiner "
for intense beam differs from a single particle dynamicgar icle azimuthal position in the machinei,, 7y - part-
which is entirely determined by the guide fields. The imC€ rest mass and relativistic factdr, (¢, ¢) - transverse

portant part of collective phenomenais the longitudinal anfcrl)gcf flue tohthe mgluced beam’s ;}E;t;omagnﬁflcdflelg;
transverse instability problem of an intense beam. - betatron phase advance per secanethe amplitude o

L : betatron oscillations.
Further it is supposed that the behavior of the beam IS The next definitions are used [1,2]

still mainly determined by the external guide fields and the

self fields induced by a large number of charge particles _

moving in their surrounding present only a relatively small § = (dQ/Qo)/(dp/po)
perturbation. Excluding the synchrotron radiation we re- 1 1
strict of phenomena which are important in the high inten- n= Tgr - W_g
sity low energy ion circular accelerators and storage rings.

In this case the characteristic times for longitudinal pro- we = Qowo& /1
cesses ar@0? + 10° beam turns whereas for transverse dp dw
phenomena only0—! = 10~2 of beam turn. Due to this T= <p—0> .

distinction the longitudinal motion has been settled as ba-

sic. The low mark 0 is referred to the nominal parameters of
The macroparticle beam representation is used for tfieachine.

algorithm proposed. This method to simulate the longitu- Induced electromagnetic force is defined by impedance

dinal high intensity beam dynamics is well known [3] and®¢am-environment interaction model [1,2]

realized in the practice computer codes [4]. On the base of

the known macroparticle algorithm to simulate the longi- o

tudinal dynamics the simulation method to study the trans- (t,6) = B

verse particle motion based on the macroparticle technique ’ 2R

and impedance beam-environment interaction has been de- w=Tee

veloped.

Z, (w)Dy(w,0)e”“'dw (3)

whereR - the average machine radius; (w) - transverse
coupling impedanceD | (w, §) - Fourier spectrum of the
2 MATHEMATICAL FORMALISM transverse dipole-moment current.

For simplicity we ignore the possible coupling of different2
directions in the transverse plane and will use only the hor-
izontal coordinate:. In order to introduce the transverse coupling impedance the
frequency description was used. There are several stan-
dard components of the total impedange (w): space
charge, resistive wall, broad band and parasitic resonator
In betatron phase spagejs; ¢ 3) the particle motion is gov- impedances. The mathematical formulas for these compo-
erned by differential equations [1,2] nents are well known [2,6].

.2 Transverse Impedance

2.1 Particle Dynamics
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2.3 Transverse Dipole-Moment Current be determined. Here in egs.(4,5) the sum is carried out over
the ensemble of macroparticles. On the uniform mesh used
for longitudinal calculations the transverse dipole moment
current is defined in the grid points by standard weight

The transverse dipole moment current is defined as [5]

N N method
Dy(t,0) =Y dj(t,0) =Y z;(t,0)I;(t,6) (4)
j=1 j=1
M
+o0 D, (t,0r) = d;(t,0)F(6,0%) kE=(0+N) (8)
Ii(t,0) = qw; Y 8[6;(t)—0—27m]  (5) ; ’

here F(6,6;) - the weight function,M - the number of

hereNN - total particle numberz;, 6, - transver nd az- .
ere otal particle numbery;, §; - transverse and a macroparticles.

imuthal coordinates of particle numberggI; (¢, 6) - j- According to the spectrum description considered in the

palr:tcl)(ilecg:;rt?: t Obr;:frl]nmglun erturbed particle motion igrevious section the next main assumption is supposed: the
g P P rbital wave with a positive harmonic number = |m|

governed by the following equations consists from the superposition of three waves which have

th me orbital num t different ph velociti
ej(t):wjt+0‘; e same orbital numberbut different phase velocities

¢ "fast” wave (m > 0) with phase velocity slightly dif-

—+oo
Wi . fer from
I;(t,0) = g=~ e—iml[0;()—0] (6)
’ 27 m;oo Qf = (1 + %) wo 9)
wj(t,0) = &g cos(Qjwit + ¢7) + a7 (6) « "slow” wave (m < 0) with phase velocity near
here the upper inder denotes initial parameter value; 0
z} () - particle displacement different from the betatron Q, = (1 - _0) Wo (10)
motion on the azimuth. "
Finally v e "synchronous” wave with phase velocity near
— Yia oo
D, (t,0) = ; I 5j ) Q0 = wp (11)
+00 ' The first two waves are referred to "pure” betatron motion
Z cos [(m + Qj)w;t + Apl, + wg] + while the third wave is determined of every kind deviations
m=—oo of particle motion from the betatron one (for example - the
N N +o0 closed orbit distortions).
Z qﬂwg ) + Z qﬂxé(g) Z cos(mw;t + Ap?,) Then for simplicity we will take intc_> account the "fas_t"
= 2 = 2 oo’ and "slow” waves only. In the coordinate system moving
, 0 with the beam these waves may be presented as travelling
Ap], =m(8; —0) waves
In frequency domain the first sum is two spectral bands s
near (m — Qo)wo and (m + Qo)wo frequenciesp = Dy (t, ) = (12)

1,2,...,00), while the second and third sums are the spec- « . c(md + Oowot) + Dy, sin(me + Qowot) =
tral band neamwy frequency. The shape of the band spec- m cos(mg + Qowot) tm sin(me + Qowot)

trum depends from the particle momentum distribution, 08 Mm@ (Crm cos Qowot + D1y, sin Qowot )+
andn parameters and the number of azimuthal harmonic sin me(D1m 08 Qowot — Cm sin Qowot)
m.
For bunched beam the conception of band formation is -
not changed, but the band spectrum will consist from the Dy (t,¢) = (13)
synchrotron satellite bands [5]. Cam cos(me — Qowot) + Doy, sin(me — Qowot) =
3 COMPUTER REALIZATION cosme(Cam 08 Qowot = Do sin Qowot) +

As it was mentioned above the longitudinal simulation is sin ¢ (Dam 08 Qowol + Cam sin Qowol)

carried out by standard macroparticle algorithm [3]. Thehere¢ - azimuthal coordinate in the beam system.

we suppose that parameters of the longitudinal macroparti- It should be pointed that in common case the coefficients

cle dynamics are known. Cim, Cam, D1, Doy, are time dependent, but the depen-
Applying the macroparticle beam representation and theence is weak. Then the expressions (12,13) are valid for

binning technique all spectrum amplitudes/of (¢,6) can  small time interval.
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To calculate four unknown coefficients for each har- 4 CONCLUSIONS
monicm the Fourier analysis of transverse dipole mome:}ia1
b

current for two time points is necessary. It can be done developed to studv both lonaitudinal and t
the following steps [6]: Fourier analysis at fixed time, the as developed lo study both longitudinal and transverse
collective phenomena for high intensity proton storage ring

to conserve the spectrum information we turn off the parti- .
cle interaction and carry out the macroparticle tracking fo?f the Moscow Meson Factory. Throw off the different fac-

time stepAt (QowoAt — /2 is recommended), then the :grs actmtfjj otn_ltrz;\jnstv%r_se r?onon it |sI pps&ble to carry out
second Fourier analysis is done. € more detailed studies, Tor example:

Applying the wave definitions (12,13) and some math- 4 the influence of longitudinal dynamics on transverse
ematical manipulations the induced electromagnetic force  gne (excitation of the betatron oscillations during the

e computer code using the algorithm discussed above

(3) is expressed as [6] longitudinal microwave instability);
¢ transverse dynamics versus the closed orbit distortions
Fi(t,¢) = Fo(é)+ (14) due to the injection law or imperfections;
[QC(6) cos Qowot + QS() cos Qowo] e transverse dynamics versus the deviation of the aver-
age beam momentum from the designed value.
QC(¢) = M? + M) cosmo+
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1738 = Q?T—ORReZJ_[(m F Qo)wo

Using the form (14) the integration of particle dynamics
equations (1,2) is not problem. Some simple examples are
considered in [6].

Finally, the computer realization of proposed algorithm
to simulate the transverse particle dynamics of an intense
ion beam in circular accelerators including an induced elec-
tromagnetic fields consists of the next stages per each time
step

¢ binning technique to define the transverse dipole-
moment current;

¢ determination of the transverse dipole-moment cur-
rent spectrum in the frequency domain;

¢ transverse induced force calculation by using the def-
inition of transverse impedance and reverse Fourier
transformation;

¢ integration of the particle motion equations.

In practice the total time to simulate the transverse dy-
namics is a few times more then it takes for longitudinal
simulation. However there is possibility to estimate the
dangerous processes leading to particle losses and beam
quality degradation.

1220



