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Abstract

The computer algorithm has been developed to study both
longitudinal and transverse microwave instability problems
of an intense ion beam for synchrotrons and storage rings.
The simulation method is presented.

1 INTRODUCTION

The presence of a large number of particles in the beam
leads to collective phenomena in circular accelerators and
storage rings [1]. In consequence the dynamics of particle
for intense beam differs from a single particle dynamics
which is entirely determined by the guide fields. The im-
portant part of collective phenomena is the longitudinal and
transverse instability problem of an intense beam.

Further it is supposed that the behavior of the beam is
still mainly determined by the external guide fields and the
self fields induced by a large number of charge particles
moving in their surrounding present only a relatively small
perturbation. Excluding the synchrotron radiation we re-
strict of phenomena which are important in the high inten-
sity low energy ion circular accelerators and storage rings.
In this case the characteristic times for longitudinal pro-
cesses are102 � 103 beam turns whereas for transverse
phenomena only10�1 � 10�2 of beam turn. Due to this
distinction the longitudinal motion has been settled as ba-
sic.

The macroparticle beam representation is used for the
algorithm proposed. This method to simulate the longitu-
dinal high intensity beam dynamics is well known [3] and
realized in the practice computer codes [4]. On the base of
the known macroparticle algorithm to simulate the longi-
tudinal dynamics the simulation method to study the trans-
verse particle motion based on the macroparticle technique
and impedance beam-environment interaction has been de-
veloped.

2 MATHEMATICAL FORMALISM

For simplicity we ignore the possible coupling of different
directions in the transverse plane and will use only the hor-
izontal coordinatex.

2.1 Particle Dynamics

In betatron phase space(x� ; _x�) the particle motion is gov-
erned by differential equations [1,2]
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herex� and _x� = dx�=dt - the transverse particle coordi-
nate and velocity with respect to the equilibrium orbit;!

- particle angular velocity;Q - particle betatron tune;� -
particle azimuthal position in the machine;m0; 
 - parti-
cle rest mass and relativistic factor;F?(t; �) - transverse
force due to the induced beam’s electromagnetic field;_'

- betatron phase advance per second;x̂ - the amplitude of
betatron oscillations.

The next definitions are used [1,2]
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The low mark 0 is referred to the nominal parameters of
machine.

Induced electromagnetic force is defined by impedance
beam-environment interaction model [1,2]
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whereR - the average machine radius;Z?(!) - transverse
coupling impedance;D?(!; �) - Fourier spectrum of the
transverse dipole-moment current.

2.2 Transverse Impedance

In order to introduce the transverse coupling impedance the
frequency description was used. There are several stan-
dard components of the total impedanceZ?(!): space
charge, resistive wall, broad band and parasitic resonator
impedances. The mathematical formulas for these compo-
nents are well known [2,6].
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2.3 Transverse Dipole-Moment Current

The transverse dipole moment current is defined as [5]
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hereN - total particle number;xj ; �j - transverse and az-
imuthal coordinates of particle numberedj; Ij(t; �) - j-
particle current on azimuth�.

For coasting beam the unperturbed particle motion is
governed by the following equations
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here the upper index0 denotes initial parameter value;
x
j
0(�) - particle displacement different from the betatron

motion on the azimuth�.
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In frequency domain the first sum is two spectral bands
near (m � Q0)!0 and (m + Q0)!0 frequencies (m =
1; 2; : : : ;1), while the second and third sums are the spec-
tral band nearm!0 frequency. The shape of the band spec-
trum depends from the particle momentum distribution,�

and� parameters and the number of azimuthal harmonic
m.

For bunched beam the conception of band formation is
not changed, but the band spectrum will consist from the
synchrotron satellite bands [5].

3 COMPUTER REALIZATION

As it was mentioned above the longitudinal simulation is
carried out by standard macroparticle algorithm [3]. Then
we suppose that parameters of the longitudinal macroparti-
cle dynamics are known.

Applying the macroparticle beam representation and the
binning technique all spectrum amplitudes ofD?(t; �) can

be determined. Here in eqs.(4,5) the sum is carried out over
the ensemble of macroparticles. On the uniform mesh used
for longitudinal calculations the transverse dipole moment
current is defined in the grid points by standard weight
method
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hereF (�; �k) - the weight function,M - the number of
macroparticles.

According to the spectrum description considered in the
previous section the next main assumption is supposed: the
orbital wave with a positive harmonic numbern = jmj

consists from the superposition of three waves which have
the same orbital numbern but different phase velocities
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� ”slow” wave (m < 0) with phase velocity near
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� ”synchronous” wave with phase velocity near


0
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The first two waves are referred to ”pure” betatron motion
while the third wave is determined of every kind deviations
of particle motion from the betatron one (for example - the
closed orbit distortions).

Then for simplicity we will take into account the ”fast”
and ”slow” waves only. In the coordinate system moving
with the beam these waves may be presented as travelling
waves

DS
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here� - azimuthal coordinate in the beam system.
It should be pointed that in common case the coefficients

C1m; C2m; D1m; D2m are time dependent, but the depen-
dence is weak. Then the expressions (12,13) are valid for
small time interval.
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To calculate four unknown coefficients for each har-
monicm the Fourier analysis of transverse dipole moment
current for two time points is necessary. It can be done by
the following steps [6]: Fourier analysis at fixed time, then
to conserve the spectrum information we turn off the parti-
cle interaction and carry out the macroparticle tracking for
time step�t (Q0!0�t = �=2 is recommended), then the
second Fourier analysis is done.

Applying the wave definitions (12,13) and some math-
ematical manipulations the induced electromagnetic force
(3) is expressed as [6]
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Using the form (14) the integration of particle dynamics
equations (1,2) is not problem. Some simple examples are
considered in [6].

Finally, the computer realization of proposed algorithm
to simulate the transverse particle dynamics of an intense
ion beam in circular accelerators including an induced elec-
tromagnetic fields consists of the next stages per each time
step

� binning technique to define the transverse dipole-
moment current;

� determination of the transverse dipole-moment cur-
rent spectrum in the frequency domain;

� transverse induced force calculation by using the def-
inition of transverse impedance and reverse Fourier
transformation;

� integration of the particle motion equations.

In practice the total time to simulate the transverse dy-
namics is a few times more then it takes for longitudinal
simulation. However there is possibility to estimate the
dangerous processes leading to particle losses and beam
quality degradation.

4 CONCLUSIONS

The computer code using the algorithm discussed above
was developed to study both longitudinal and transverse
collective phenomena for high intensity proton storage ring
of the Moscow Meson Factory. Throw off the different fac-
tors acting on transverse motion it is possible to carry out
the more detailed studies, for example:

� the influence of longitudinal dynamics on transverse
one (excitation of the betatron oscillations during the
longitudinal microwave instability);

� transverse dynamics versus the closed orbit distortions
due to the injection law or imperfections;

� transverse dynamics versus the deviation of the aver-
age beam momentum from the designed value.
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