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Abstract drift space of length.; which separates it from a second
uadrupole of magnetic gradie@t and length,. In thin

The reported study is based on the analytical treatment Oehs model, the drifts are replaced by

veloped for an experimental collider insertion made of tw
symmetric triplets, the inner triplet located near the inter- =Ly +1,/2
action point (IP) and the outer triplet preceding a regular 1
lattice. These two triplets are assumed to be symmetric in
they geometry and quadrupole gtrengths, but no@ n th.ez'arnd the gradient by the normalised integrated strengths
Twiss parameters. The method is applied to an insertion . ;
i X . .andg,. The total number of parameters per triplet is four
of the type of an experimental LHC insertion. The drift . :
. L . and the strength ratib = g4/g» is used preferably tg,
betwen the IP and the first quadrupole is fixed and the in- . e A
: ) : : . . itself (for k = —1, the triplet is ‘canonical’). Fig. 1 shows

ner triplet is constrained to achiev@acrossing with equal ; . : ) . . L
) : the two thin-lens triplets using this notation with the indices
and opposite slopes(values) in the two planes. The outer

. . 1 ando for the inner and outer triplet, respectively. The
:gp;(t:rzzfmtgﬁz 2? erFt(o)Ian(;tgf? ?ﬁ;oigﬁégr%rgsgg?ysilﬁ(:ngth of the drift between the inner triplet exit (ITE) and
’ e outer triplet entrance (OTE) is notkd

provides in a given parameter interval all the existing solu-
tions for the distance between triplets and the total insertion
length, as functions of one gradient and the quadrupole sep-

ls = Ly +31,/2

aration in the inner triplet. The variation of the quadrupol |TEd1 OTE _)' | | FODO
strengths when thg-functions increase at the IP (detun-¢————-————+ - lm'd-'ce”
ing) is studied and the extension from thin lens to thick| [ Bis [ Lis | I . | Tos [ Los | -
lens illustrated. 8iz 2gia 8i2 2 802 2804 Bo2

1 INTRODUCTION Figure 1: Two triplets model

This analysis relies on an analytical treatment of a
schematic thin lens model of generic insertions based on
two symmetric triplets separated by a drift. It allows to 2 THEINNER TRIPLET

explore their capabilities and provides, without using a nurpg sy dy of the inner triplet makes use of the expressions
merical search, the existing solutions which can easily B8 gerived to find the domain of the free parameter-values
extended to the equivalent thick lens model. Such genetitoyiding the Twiss functions required at OTE according

insertions have the general property to transfer the beag 5 gpecific criterion. The criterion retained is to obtain a
from a double waist or focus, with in general d'fferemsymmetric,@’-crossing

horizontal and vertical beam dimensions, to a given point
of a FODO lattice. The clue consists in asking the inner Bo=By=00 @ .=—a,=a, (1)
triplet to provide a condition of-crossing and using the
outer triplet as a “FODO transformer” froprcrossing to  This choice allows for an easy matching to the outer sym-
B-crossing with different amplitudes. This two-step admetric triplet and is suggested on the analogy of the FODO
justment provides the required flexibility in the choice ofstructure we eventually want to connect with.
the overall insertion length and in the distance between theIn an insertion, the distandg is fixed and only three
two triplets. The FODO transformer is a useful by-productree parameters remain, i.d;3, g;» andk to specify the
which can be profitable in other situations. triplet. The study of the behaviour of the Twiss quantities at
A particular insertion with geometrical parameters clos©TE (indexo) as functions of these parameters requires the
to those of an LHC [1] experimental insertion is used to ilexpressions df, a, andg3, in terms of the Twiss quantities
lustrate how to apply the analysis. The domain of existencg ITE (index:i). Using the usual equations of transfer of
of solutions is given and the tunability of the insertion inthe betatron functions and observing that a drift does not
terms of 3-amplitude at the Interaction Point is exploredmodify y = ( 1 4a?)/83, we get
for the particular conditions retained.
Each symmetric (in its geometry) triplet is the combina- ls = QXa,i + QAy,i @ .= Qa,i = Qy,i
tion of a doublet and its mirrorimage. The doublet consists 2y; 2 )
of a first drift space of lengtli, followed by a quadrupole 8, = l[ﬂ 4 By — (i + ay )]
of magnetic gradier®, and lengtHi, followed by a second o7 gl Py AT, T By
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The preservation of in a drift and the equality and~.. The first solution is:

= coming from (1) impose a constraint on the
71,0 ’Yy,o g ( ) p (al +a2)zr’1 +Ck0

initial free parameters which are reduced to two. Writing I =

it explicitely and using the expressions of the transfer ma- =72
trices in terms of the triplet parameters give the following go = V1T 1
equation for the strength ratio (a1 +az)1—22,

2 4 2 4 2 ls = 211/’2371
k*(a2g; + b29; ) + k(arg;» + b1gi€ +c1) e 02)2 12
+bogia+co=0 (3) g4 = T
whereaz,bs,a1,b1,¢1,b0,c0 are functions of; ;,/; 3 and8* wherez, ; is the (only) real solution_of the.cubic equation
[3]. Both solutions of (3) when they exist are negative:® + z + 2a9/ (a1 + a2) = 0, solution which can be ex-
as expected andk is generally smaller than 1 (canoni- plicitely written ([3], App.B) in terms ofay, as andag
cal triplets do not satisfy all the constraints, in particular afefined hereafter

additional one or#,,,...). In the following, they are referred

as the smallest or largest root in real value. 3 5
. 2 — + (@102 + a
A program has been written to explore the values taken ap = VACTSEN) \/L/BZ 2h1)
byk,l. =15+ 2(lL;1 + 1;3), B, anda, when varying; s P13

andg, respectively.
The resullts shovy that the Igrgest solution _of the sec_onldHe second solution is:
order equation (3) is to be avoided, because it is associate

with very high values of the- ands-functions at OTE and f=1/gs = + o
the corresponding distanéefrom the IP is very sensitive Y172
to small changes of the gradignt,. L = |f/(a1 + a2)|\Vao(ao + a1 + as])
Is = [fIV1+ a1 + as|/ag
3 THE OUTER TRIPLET 91 = —02/2

The final choice between the two solutions depends on
e specific requirements of the generic insertion. As an
example the selection criterion in the LHC application was

outer trlp.Iet IS de§|gned to match tlﬁefunctlons from thls. to minimise the3,, and3, maximum amplitudes within the
symmetric crossing to the following symmetric crossmg{riplet

corresponding to the FODO mid-cell Point. For this pre-

cise reason, we can call it a “FODO transformer” which
can be useful as a regular lattice adapter in all cases where4 FULL INSERTION FROM DOUBLE

a step-variation of thg-functions are required. WAIST TO FODO LATTICE

At both the entrance and the exit of the outer triplet, w
assume by definition that

While the inner triplet (Section 2) transforms the doublc—igh
waist at the IP into a symmetrj¢ — crossing at OTE, the

% et us now consider the full insertion shown in Figure 1
which is composed of two symmetric triplets (inner and
outer) separated by a driff. The inner triplet has the role
studied in the previous section, transforming the double
Br2 = By2= Ba : azp=—ays=as (4 \ajstat the IP into a symmetrjg¢ — crossing at OTE. The

. . . . . outer triplet matches from this symmetgic— crossing to
and that in addition they satisfy the meq-uahty the FODO mid-cell Point. It was proved (Section 3) that
a1ff + azf31 # 0. Using then the analysis of [3], based ony, o 56 always two solutions if we do not impose any

:renexr;r?r? S'?_Cv? of th? trr;:mtsfrer rr:eithrlx Cgﬁﬁf'entsngs f)t’;?((‘ﬁl%ndition on the phase advances. Thus their parameters
ons ot the SS parameters at the entrance and exit, by 5154 functions of; andg,. The whole insertion de-

is possible to rigorously demonstrate that there are two arﬂ)%nds on these two free variables which can be determined
only two symmetric triplets which match the betatron funcs

tions according to eq, (4). This assumes the absencegﬁ adding two supplementary conditions. In the following

constraints on the phase advances, but includes the follo ~velopment we have chosen to impose the values for the
. - P . ' . , Wlstanceil between the inner and the outer triplets and the
ing conditions that are required for solutions to exist:

overall insertion lengtll, (Fig. 1):

Beg = By1= B ; Qp 1= —Qy1 = Qi

Bo # B ; s # —aq di =l + 15+ 10
Y2 7’5 Y1 s alﬂQ + 04251 7é 0 dy = 2([,’1 + iz +1l1 + 103) + 5

The parameters of the two corresponding symmetrisecause they are generally fixed by the geometry (even if
triplets can be explicitely written in terms of;, ay, 71, more loosely fowd,).
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Triplet normalised gradiients as functions of betaat IP
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Example of a lattice for an experimental LHC insertion (thin lens)
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Figure 4: Normalised gradients of the two triplets as func-
Figure 2: Horizontal and vertical-functions of an inser- tion of the3-function value at the IP4* = 0.5 — 9.8m)
tion matching the IP to the Mid-cell Point with = 72 m
anda = —1 (thin lens approximation)

Horizontal and vertical phase advance during tuning
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tion of the3-function value at the IPg* = 0.5 — 9.8m)

Figure 3: Horizontal and verticél-functions of an inser-

tion matching the IP to the Mid-cell Point with = 72 m Fig. 2 shows the thin lens approximation and Fig. 3 the
anda = —1 (thick lens model) extension to the thick lens case. A specific program was
written to study the behaviour of the quadrupole strengths
A simple code allows to compute the parameters of thfor an increasingd-amplitude at the IP (“tuning”). Fig. 4
two triplets and the drift lengtly which satisfy these con- shows that their change is quite smooth fovalues at IP
straints. A further condition is given by the maximyt up to near 10 m and Fig. 5 gives the corresponding varia-
value acceptable in the inner triplet, satisfied if the exation of the horizontal and vertical phase advances. Hence,
value ofd; is replaced by a range. The figures 2 and & is demonstrated that the proposed method allows to deter-
show an application to a schematic configuration of onmine unequivocally inside the parameter space the existing
LHC (version 4) low# insertion [1]. The distance betweenlattice solutions for a tunable LHC-type experimental in-
the IP and the Mid-cell Point of the FODO cell is 275 msertion, only based on symmetric but not canonical triplets.
while the distance between the last quadrupole of the inner
triplet and the first quadrupole of the outer triplet is 154 5 REFERENCES
m in the thin lens approximation. The free distardgeis _
fixed to 23 m and_; to 2 m. The quadrupole length is [1] LHC Conceptual Design, CERN/AC/95-05 (LHC), 1995.
equal to 5.5 m; their gradients should not exceed 225 T/m[2] T.E. d’Amico, ‘General Treatment of a matching
The guadrupole separation must be larger than 2 m. The quadrupole triplet which is symmetric around its me-
values of the3- anda-function at the IP are 0.5 m and 0 dian plane’, CLIC Note 322, 1997.
(in both planes, at 7 TeV) and taken equal to 72 m and -¥3] T.E. d’Amico, G. Guignard, ‘Analysis of generic insertions
respectively at the Mid-cell Point (with,,,., < 5500 m). made of two symmetric triplets’, CERN-SL-98-014, 1998.
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