
EXPERIMENTAL INSERTIONS MADE OF TWO SYMMETRIC TRIPLETS

E.T. d’Amico,G.Guignard, CERN, Geneva, Switzerland

Abstract

The reported study is based on the analytical treatment de-
veloped for an experimental collider insertion made of two
symmetric triplets, the inner triplet located near the inter-
action point (IP) and the outer triplet preceding a regular
lattice. These two triplets are assumed to be symmetric in
their geometry and quadrupole strengths, but not in their
Twiss parameters. The method is applied to an insertion
of the type of an experimental LHC insertion. The drift
betwen the IP and the first quadrupole is fixed and the in-
ner triplet is constrained to achieve a�-crossing with equal
and opposite slopes (� values) in the two planes. The outer
triplet acts then as a FODO transformer from�-crossing
to �-crossing in order to match the lattice. The analysis
provides in a given parameter interval all the existing solu-
tions for the distance between triplets and the total insertion
length, as functions of one gradient and the quadrupole sep-
aration in the inner triplet. The variation of the quadrupole
strengths when the�-functions increase at the IP (detun-
ing) is studied and the extension from thin lens to thick
lens illustrated.

1 INTRODUCTION

This analysis relies on an analytical treatment of a
schematic thin lens model of generic insertions based on
two symmetric triplets separated by a drift. It allows to
explore their capabilities and provides, without using a nu-
merical search, the existing solutions which can easily be
extended to the equivalent thick lens model. Such generic
insertions have the general property to transfer the beam
from a double waist or focus, with in general different
horizontal and vertical beam dimensions, to a given point
of a FODO lattice. The clue consists in asking the inner
triplet to provide a condition of�-crossing and using the
outer triplet as a “FODO transformer” from�-crossing to
�-crossing with different amplitudes. This two-step ad-
justment provides the required flexibility in the choice of
the overall insertion length and in the distance between the
two triplets. The FODO transformer is a useful by-product
which can be profitable in other situations.

A particular insertion with geometrical parameters close
to those of an LHC [1] experimental insertion is used to il-
lustrate how to apply the analysis. The domain of existence
of solutions is given and the tunability of the insertion in
terms of�-amplitude at the Interaction Point is explored,
for the particular conditions retained.

Each symmetric (in its geometry) triplet is the combina-
tion of a doublet and its mirror image. The doublet consists
of a first drift space of lengthL1 followed by a quadrupole
of magnetic gradientG2 and lengthlq followed by a second

drift space of lengthL3 which separates it from a second
quadrupole of magnetic gradientG4 and lengthlq . In thin
lens model, the drifts are replaced by

l1 = L1 + lq=2

l3 = L3 + 3 lq=2

and the gradient by the normalised integrated strengthsg2
andg4. The total number of parameters per triplet is four
and the strength ratiok = g4=g2 is used preferably tog4
itself (for k = �1, the triplet is ‘canonical’). Fig. 1 shows
the two thin-lens triplets using this notation with the indices
i ando for the inner and outer triplet, respectively. The
length of the drift between the inner triplet exit (ITE) and
the outer triplet entrance (OTE) is notedl5.
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Figure 1: Two triplets model

2 THE INNER TRIPLET

The study of the inner triplet makes use of the expressions
[2] derived to find the domain of the free parameter-values
providing the Twiss functions required at OTE according
to a specific criterion. The criterion retained is to obtain a
symmetric�-crossing

�x = �y = �o ;� x = ��y = �o (1)

This choice allows for an easy matching to the outer sym-
metric triplet and is suggested on the analogy of the FODO
structure we eventually want to connect with.

In an insertion, the distanceli1 is fixed and only three
free parameters remain, i.e.li3; gi2 andk to specify the
triplet. The study of the behaviour of the Twiss quantities at
OTE (indexo) as functions of these parameters requires the
expressions ofl5,�o and�o in terms of the Twiss quantities
at ITE (indexi). Using the usual equations of transfer of
the betatron functions and observing that a drift does not
modify 
 = ( 1 +�2)=�, we get

l5 =
�x;i + �y;i

2
i
;� o =

�x;i � �y;i

2

�o =
1

2
[�x;i + �y;i� l5(�x;i + �y;i)]

(2)
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The preservation of
 in a drift and the equality

x;o = 
y;o coming from (1) impose a constraint on the
initial free parameters which are reduced to two. Writing
it explicitely and using the expressions of the transfer ma-
trices in terms of the triplet parameters give the following
equation for the strength ratiok:

k2(a2g
4

i;2
+ b2g

2

i;2
) + k(a1g

4

i;2
+ b1g

2

i;2
+ c1)

+ b0g
2

i;2
+ c0 = 0 (3)

wherea2,b2,a1,b1,c1,b0,c0 are functions ofli;1,li;3 and��

[3]. Both solutions of (3) when they exist are negative
as expected and�k is generally smaller than 1 (canoni-
cal triplets do not satisfy all the constraints, in particular an
additional one on�max). In the following, they are referred
as the smallest or largest root in real value.

A program has been written to explore the values taken
by k, lc = l5 + 2(li;1 + li;3), �o and�o when varyingli;3
andg2 respectively.

The results show that the largest solution of the second
order equation (3) is to be avoided, because it is associated
with very high values of the�- and�-functions at OTE and
the corresponding distancelc from the IP is very sensitive
to small changes of the gradientgi;2.

3 THE OUTER TRIPLET

While the inner triplet (Section 2) transforms the double
waist at the IP into a symmetric� � crossing at OTE, the
outer triplet is designed to match the�-functions from this
symmetric crossing to the following symmetric crossing
corresponding to the FODO mid-cell Point. For this pre-
cise reason, we can call it a “FODO transformer” which
can be useful as a regular lattice adapter in all cases where
a step-variation of the�-functions are required.
At both the entrance and the exit of the outer triplet, we
assume by definition that

�x;1 = �y;1= �1 ; �x;1= ��y;1 = �1

�x;2 = �y;2= �2 ; �x;2= ��y;2 = �2 (4)

and that in addition they satisfy the inequality
�1�2+�2�1 6= 0. Using then the analysis of [3], based on
the expressions of the transfer matrix coefficients as func-
tions of the Twiss parameters at the entrance and exit, it
is possible to rigorously demonstrate that there are two and
only two symmetric triplets which match the betatron func-
tions according to eq. (4). This assumes the absence of
constraints on the phase advances, but includes the follow-
ing conditions that are required for solutions to exist:

�2 6= �1 ; �2 6= ��1


2 6= 
1 ; �1�2 + �2�1 6= 0

The parameters of the two corresponding symmetric
triplets can be explicitely written in terms of�1, �2, 
1,

and
2. The first solution is:

l1 =

����
(�1 + �2)zr;1 + �0


1 � 
2

����

g2 =

1 � 
2

(�1 + �2)

1

1� z2
r;1

l3 = 2l1=z
2

r;1

g4 =
(�1 + �2)z

3

r;1
g2

2�0

wherezr;1 is the (only) real solution of the cubic equation
z3 + z + 2�0=(�1 + �2) = 0, solution which can be ex-
plicitely written ([3], App.B) in terms of�1, �2 and�0

defined hereafter

�0 =

p
(�2 � �1)2 + (�1�2 + �2�1)2p

�1�2
:

The second solution is:

f = 1=g2 =
�1 + �2


1 � 
2

l1 = jf=(�1 + �2)j
p

�0(�0 + j�1 + �2j)
l3 = jf j

p
1 + j�1 + �2j=�0

g4 = �g2=2

The final choice between the two solutions depends on
the specific requirements of the generic insertion. As an
example the selection criterion in the LHC application was
to minimise the�x and�y maximum amplitudes within the
triplet.

4 FULL INSERTION FROM DOUBLE
WAIST TO FODO LATTICE

Let us now consider the full insertion shown in Figure 1
which is composed of two symmetric triplets (inner and
outer) separated by a driftl5. The inner triplet has the role
studied in the previous section, transforming the double
waist at the IP into a symmetric� � crossing at OTE. The
outer triplet matches from this symmetric� � crossing to
the FODO mid-cell Point. It was proved (Section 3) that
there are always two solutions if we do not impose any
condition on the phase advances. Thus their parameters
are also functions ofl3 andg2. The whole insertion de-
pends on these two free variables which can be determined
by adding two supplementary conditions. In the following
development we have chosen to impose the values for the
distanced1 between the inner and the outer triplets and the
overall insertion lengthd2 (Fig. 1):

d1 = li1 + l5 + lo1

d2 = 2(li1 + li3 + lo1 + lo3) + l5

because they are generally fixed by the geometry (even if
more loosely ford1).
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Figure 2: Horizontal and vertical�-functions of an inser-
tion matching the IP to the Mid-cell Point with� = 72 m
and� = �1 (thin lens approximation)
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Example of a lattice for an experimental LHC insertion (thick lens)
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Figure 3: Horizontal and vertical�-functions of an inser-
tion matching the IP to the Mid-cell Point with� = 72 m
and� = �1 (thick lens model)

A simple code allows to compute the parameters of the
two triplets and the drift lengthl5 which satisfy these con-
straints. A further condition is given by the maximum�
value acceptable in the inner triplet, satisfied if the exact
value ofd1 is replaced by a range. The figures 2 and 3
show an application to a schematic configuration of one
LHC (version 4) low-� insertion [1]. The distance between
the IP and the Mid-cell Point of the FODO cell is 275 m
while the distance between the last quadrupole of the inner
triplet and the first quadrupole of the outer triplet is 154
m in the thin lens approximation. The free distanceL1 is
fixed to 23 m andL3 to 2 m. The quadrupole lengthlq is
equal to 5.5 m; their gradients should not exceed 225 T/m.
The quadrupole separation must be larger than 2 m. The
values of the�- and�-function at the IP are 0.5 m and 0
(in both planes, at 7 TeV) and taken equal to 72 m and -1
respectively at the Mid-cell Point (with�max � 5500m).
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Figure 4: Normalised gradients of the two triplets as func-
tion of the�-function value at the IP (�� = 0:5� 9:8m)
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Figure 5: Horizontal and vertical phase advances as func-
tion of the�-function value at the IP (�� = 0:5� 9:8m)

Fig. 2 shows the thin lens approximation and Fig. 3 the
extension to the thick lens case. A specific program was
written to study the behaviour of the quadrupole strengths
for an increasing�-amplitude at the IP (“tuning”). Fig. 4
shows that their change is quite smooth for�-values at IP
up to near 10 m and Fig. 5 gives the corresponding varia-
tion of the horizontal and vertical phase advances. Hence,
it is demonstrated that the proposed method allows to deter-
mine unequivocally inside the parameter space the existing
lattice solutions for a tunable LHC-type experimental in-
sertion, only based on symmetric but not canonical triplets.
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