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Abstract

On a compact synchrotron with combined function lattice,
a tune value evaluated by the conventional method may
not be accurate because of fringing and connecting region,
which are difficult to treat accurately with the conventional
method. We evaluate a tune value by reconstructing trans-
fer matrix from particle orbits which are tracked in given
magnetic field.

1 INTRODUCTION

For cancer therapy, compactness and easy handling in daily
operation are required for a synchrotron system. We can
simplify the power supply system and many tuning com-
ponents by introducing combined function magnets. The
simplification of the tuning components, however, reduces
the tunability of operating point after machining. Thus it is
necessary to evaluate the accurate tune value in designing
stage. Because the dipole and the quadrupole components
decays differently in the fringing area and the transition re-
gion of the combined function magnet, the direct derivation
of the transfer matrix by the conventional method may not
be accurate. Then we took an indirect method, which re-
constructs a transfer matrix from betatron oscillation orbits.
In the following paper, we report our calculation method
and its results.

2 BASIC THEORY

We can obtain a orbit of particle in the given magnetic field
by integrating the equation of motion:

γm
dv

dt
= qv × B, (1)

wheredγ/dt is assumed to be zero. Then, we reconstruct
transfer matrix from betatron oscillating orbits and ex-
tract both beta-function and tune-value from reconstructed
transfer matrix.

2.1 Central Orbit and Coordinate

To find the central orbit, we determine a central orbit condi-
tion from closed orbit conditions using symmetry of orbit.
Integrating equation (1) with such condition, we obtain the
central orbitr0(s) (s(t) =

∫ t

0
| dv

dt |dt). Thus, we intro-
duce a curvilinear coordinate(see Fig.1) by Servet-Frenet

formula:

r(x, s, z) = r0(s) + x · n(s) + z · b(s), (2)

t(s) =
dr0(s)

ds
, (3)

b(s) = n(s) × t(s), and (4)

dt(s)
ds

= −G(s) · n(s), (5)

whereG(s) is curvature. In the curvilinear coordinate, a
particle position in phase space is denoted by 6-parameters
(s, x, x′, z, z′,4p/p0).
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Figure 1: Curvilinear Coordinate

2.2 Transfer Matrix Reconstruction

The particle motion is considered as the mapping of
(x, x′, z, z′,4p/p0) in s space. The transfer matrix is de-
fined as a first order term of this mapping froms = s0

plane tos = s1 plane:


x1

x′
1

z1

z′1
(4p

p0
)1


 = M(s1|s0)




x0

x′
0

z0

z′0
(4p

p0
)0




+ nonlinear term. (6)

The coordinate ats = s1 plane is derived from the co-
ordinate ats = s0 plane by integrating equation of mo-
tion. Thus the transfer matrix is reconstructed by Least
Square Method using betatron orbits which have an am-
plitude small enough to neglect nonlinear term ofx, x′, z,
z′, and4p/p0. Considering thatx− z coupling is negligi-
ble and4p is fixed to zero, equation (6) is rewritten by the
least square method as:

∑
n

(
ξ

(n)
1

ξ′(n)
1

)
(ξ(n)

0 ξ′(n)
0 )

= M(s1 |s0)
∑

n

(
ξ

(n)
0

ξ′(n)
0

)
(ξ(n)

0 ξ′(n)
0 ), (7)
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whereξ represents eitherx or z andn is the orbit index.
For calculation simplicity, we choose(ξ(n)

0 , ξ′(n)
0 ) so that∑

n ξ
(n)
0 ξ′(n)

0 = 0 and rewrite equation (7) as

M(s1|s0) =
∑

n

(
ξ

(n)
1 ξ

(n)
0 ξ

(n)
1 ξ′(n)

0

ξ′(n)
1 ξ

(n)
0 ξ′(n)

1 ξ′(n)
0

)

×
( ∑

n |ξ(n)
0 |2 0

0
∑

n |ξ′(n)
0 |2

)−1

. (8)

Using product rule, a relation between one revolution
transfer matrixM rev(s) andM rev(s0) is obtained as:

M rev(s)
= M(s + C|s)
= M(s + C|s0 + C)M(s0 + C|s0)M (s0|s)
= M(s|s0)M rev(s0)M(s|s0)−1, (9)

whereC is one revolution length of the ring. We obtain one
revolution transfer matrix which have any periodic bound-
ary from transfer matrixM(s|s0) (s0 < s ≤ s0 + C)
reconstructed by one path tracking of betatron orbits.

2.3 Tune Value

In Hill equation formalism, one revolution transfer matrix
Mrev is related to phase advance and twiss parameters by
following equation:

Mrev =
(

cos µ + α sin µ β sin µ
−γ sin µ cos µ − α sin µ

)
, (10)

whereµ is phase advance.α, β, andγ are twiss param-
eters at the revolution boundary. Applying equation (10)
to reconstructed one revolution transfer matrixMrev(s)
and considering relationship between twiss parameters1 +
α2 = βγ, we obtain phase advanceµ and twiss parameters:

µ = cos−1 m11 + m22

2
, (11)

β =
1√

−m21
m12

−
(

m11−m22
2m12

)2
, (12)

α =
m11 − m22

2m12
β, and γ = −m21

m12
β, (13)

wheremij is the component ofMrev(s) defined by

M rev(s) =
(

m11 m12

m21 m22

)
. (14)

Thus s dependence of twiss parameters are obtained
from one revolution transfer matrixMrev(s). And the tune
valueν is given by the definitionν = µ/2π.

3 TRACKING METHOD

The transfer matrix is reconstructed by particle tracking in
the magnetic field which is given by TOSCA1.

13D magnetic field calculation code: Vector Fields Limited(24 Bank-
side, Kidlington, Oxford OX5 1JE, England)

3.1 Ring with Combined Function Magnets

The proton synchrotron ring[1] which we consider has me-
dian plane symmetry and 60 degree rotational symmetry
(see Fig.2). Each bending magnet is an FDF combined

Figure 2: Proton Synchrotron Ring which we consider

function magnet and bending angle of F sector and D sec-
tor are15.25deg and29.5deg, respectively. A simple cen-
tral orbit has 60 degree rotational symmetry and stays on
median plane. Considering the symmetry of the central or-
bit, equation (10) can be applied to one cell transfer matrix
M cell(s) = M(s + C/6|s) to calculate the phase shift in
a cell and twiss parameters. Thus the product rule gives re-
lationsMrev = (M cell)6 andν = 3

π
µcell, whereµcell is

the phase shift in a cell.

3.2 Magnetic Field

We must interpolate the magnetic field because TOSCA
gives magnetic field values at discrete points. Considering
the sector shape of the magnet, it is convenient to use cylin-
drical coordinate(ρ, θ, Z) for magnetic field calculation.
Because of median plane symmetry, magnetic field com-
ponentBρ and Bθ vanish on central orbit plane(median
plane). Considering that rotB = 0 and divB = 0, mag-
netic field close to median plane can be expanded as fol-
lows:

BZ(ρ, θ, Z) = BZ(ρ, θ, 0) + O(Z2), (15)

Bρ(ρ, θ, Z) = Z
∂BZ

∂ρ
(ρ, θ, 0) + O(Z2), and (16)

Bθ(ρ, θ, Z) =
Z

ρ

∂BZ

∂θ
(ρ, θ, 0) + O(Z2). (17)

In order to avoid the direct numerical differentiation,
firstly we expanded the field maps into two dimension
Fourier series and then the derivatives of the Fourier com-
ponents are summed up. Fourier expansion onθ axis gives
quick convergence because of the cell periodicity. The
magnetic field distribution onρ axis, however, is not pe-
riodic and we added mirror image(see Fig.3). We modify a
few points nearby both the mirror boundaries, which are far
away from the orbit, forC2 class continuity by following
conditions:
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Figure 3: Mirror Image Connection

1. first and second order derivative vanish at the mirror
boundary,

2. field component and first order derivative are con-
nected continuously and second order derivative van-
ish at the boundary between modified region and given
data region.

3.3 Tracking

The equation of motion is integrated by Runge Kutta Gill
method and the betatron oscillation amplitude for initial
condition is determined by following method:

1. calculate tune valueνn from given amplitude series
an = a0r

n (0 < r < 1, we user ∼ 1/3),

2. select the amplitudean to satisfy|νn+1−νn| less than
required tolerance.

4 PERTURBATION METHOD

We can obtain the excitation dependence of the tune value
by the perturbation method for comparison. From the given
central orbit and beta function, the tune shift is obtained as:

4ν =
1

4π

∮
Ring

β(s)4k(s)ds, (18)

whereβ(s) is beta function and4k(s) is an error term of
Hill equation, which is given by the lowest order expansion
of equation of motion:

4kx =
1 − n

ρ2
, 4kz =

n

ρ2
(19)

n = − ρ

BZ

∂BZ

∂x
, ρ = − p

qBZ
, (20)

whereq andp are particle charge and momentum, respec-
tively. In this calculation, the central orbit and its beta func-
tion at the energyE = 26MeV are used.

5 RESULTS

Figure 4 and 5 show a beta function and an excitation de-
pendence of the tune value, respectively. In Figure 5, the
circle points show the tune values calculated by the track-
ing method and the square points show the tune values cal-
culated by the perturbation method. There is good agree-
ment between two methods. Figure 6 shows the integral
term of the equation (18). Because the beta function in the

D sector is larger than that in the F sectors, then value
variation in the D sector makes the bend on the tune shift
around the energyE = 150 ∼ 180MeV.
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Figure 4: Beta function at the energyE = 26MeV
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Figure 5: Excitation dependence of the tune value with res-
onance lines up to 8th order
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Figure 6:θ dependence of integral term
∫ s

s0
β(s)4k(s)ds
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