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Abstract formula:

On a compact synchrotron with combined function lattice, r(z, s, z) = ro(s) +z - n(s) + z - b(s), (2)
a tune value evaluated by the conventional method may dro(s)

not be accurate because of fringing amthicecting region, s) = ds ©)
which are difficult to treat accurately with the conventional b(s) = n(s) x t(s), and (4)
method. We evaluate a tune value by reconstructing trans- dt(s)

fer matrix from particle orbits which are tracked in given

o = —G(s) - n(s), (5)
magnetic field.

whereG(s) is curvature. In the curvilinear coordinate, a
particle position in phase space is denoted by 6-parameters

1 INTRODUCTION (5.2, 4", 2. 2. \p/ o).

For cancer therapy, compactness and easy handling in daily
operation are required for a synchrotron system. We can
simplify the power supply system and many tuning com-
ponents by introducing combined function magnets. The

Central Orbit

simplification of the tuning components, however, reduces o)
the tunability of operating point after machining. Thus itis
necessary to evaluate the accurate tune value in designing Figure 1: Curvilinear Coordinate

stage. Because the dipole and the qupdte components

decays differently in the fringing area and the titina re-

gion of the combined function magnet, the direct derivatio®.2  Transfer Matrix Reconstruction

of the transfer matrix by the conventional method may nofy,o particle motion is considered as the mapping of
be accurate. Then we took an indirect had, which re- w,a’, 2, 2", Ap/po) in s space. The transfer matrix is de-
constructs a transfer matrix from betatron oscillation orbit§ineq as a first order term of this mapping fram= sg

In the following paper, we report our calculation methodp|ane tos = s; plane:

and its results.
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We can obtain a orbit of particle in the given magnetic field Ai{ A'Zg

by integrating the equation of motion: (p_o)l (p—o)o
+ nonlinear term. (6)
av

ym— = qv x B, (1) The coordinate at = s; plane is derived from the co-

ordinate ats = so plane by integrating equation of mo-

whered~/dt is assumed to be zero. Then, we reconstrudion. Thus the transfer matrix is reconstructed by Least
transfer matrix from betatron oscillating orbits and ex-Sduare Method using betatron orbits which have an am-

tract both beta-function and tune-value from reconstructedjitude small enough to neglect nonlinear termeof’, z,
transfer matrix. Z', andAp/po. Considering that — z coupling is negligi-
ble andAp is fixed to zero, equation (6) is rewritten by the

. } least thod as:
2.1 Central Orbit and Coordinate east square method as

(n)
To find the central orbit, we determine a central orbit condi- Z < & ) €§es)

tion from closed orbit conditions using symmetry of orbit. 5, 5’5"’

Integrating equation (1) with such condition, we obtain the (n)

central orbitro(s) (s(t) = [ |9|dt). Thus, we intro- =M (s1/50) > ( 5,0@) ) &y, (1
duce a curvilinear coordinate(see Fig.1) by Servet-Frenet n ¢'o
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where¢ represents either or z andn is the orbit index.
For calculation simplicity, we choosg{™, ¢/$™) so that
S dmertm = 0 and rewrite equation (7) as

(n) ~(n) (n) #1(n)
' (n) -
>l 2 0 ) G)

X
< 0 S ‘EI((JH)‘Z

Using product rule, a relation between one revolution

transfer matrixM ,..,,(s) andM .., (so) is obtained as:
M ;e (5)
= M (s + C|s)
M (s + C|sg + C)M (so + C|s0)M (so|s)
M (5]50)M e (50)M (s]50) 1,

(9)

whereC' is one revolution length of the ring. We obtain one
revolution transfer matrix which have any periodic bound-

ary from transfer matriXxM (s|so) (so < s < so + O)
reconstructed by one path tracking of betatron orbits.

2.3 Tune Value

3.1 Ring with Combined Function Magnets

The proton synchrotron ring[1] which we consider has me-
dian plane symmetry and 60 degree rotational symmetry
(see Fig.2). Each bending magnet is an FDF combined

Inflector -~ Tnicetion Beam
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Figure 2: Proton Synchrotron Ring which we consider

function magnet and bending angle of F sector and D sec-
tor arel5.25deg and?9.5deg, respectively. A simple cen-

tral orbit has 60 degree rotational symmetry and stays on
median plane. Considering the symmetry of the central or-

In Hill equation formalism, one revolution transfer matrixbit, equation (10) can be applied to one cell transfer matrix
M .. is related to phase advance and twiss parameters Bff ccu(s) = M (s + C/6|s) to calculate the phase shift in

following equation:
cos u + asinp

( —ysinu > (10

wherey is phase advancewx, 3, and-~y are twiss param-
eters at the revolution boundary. Applying equation (1
to reconstructed one revolution transfer mathik,..,,(s)

and considering relationship between twiss paraméters
a? = (3, we obtain phase advangeand twiss parameters:

gsinpu
CoSp — asinp

M rev

_1 m11+ma2

1L = COS PR (11)
= = BRNGEY
2
__Mm21 _ [ Mi1—M22

\/ miz ( 2ma2 )
=225 and 4= -2, (13)

2mi2 mi2

wherem;; is the component dM ,..,(s) defined by

M rev = mll mlz . 14
(S) ( ma1 Mm22 ( )

a cell and twiss parameters. Thus the product rule gives re-
lationsM e, = (M ceir)® andv = 2 picey, wherepicey is
the phase shiftin a cell.

3.2 Magnetic Field

%e must interpolate the magnetic field because TOSCA

gives magnetic field values at discrete points. Considering
the sector shape of the magnet, itis convenient to use cylin-
drical coordinatép, 8, Z) for magnetic field calculation.
Because of median plane symmetry, magnetic field com-
ponentB, and By vanish on central orbit plane(median
plane). Considering that Bt = 0 and divB = 0, mag-
netic field close to median plane can be expanded as fol-
lows:

BZ(pa 9, Z) = BZ(pa 9, O) + O(ZZ)! (15)
B,(p,0,2) = Z%(p, 6,0) + O(Z?), and (16)
Bp6.2) = 29820, 600+ 022, a7)

p 00

Thus s dependence of twiss parameters are obtainedIn order to avoid the direct numerical differentiation,
from one revolution transfer matri¥l ..., (s). Andthe tune firstly we expanded the field maps into two dimension

valuev is given by the definitiow = 1 /27.

3 TRACKING METHOD

Fourier series and then the derivatives of the Fourier com-
ponents are summed up. Fourier expansiofl aris gives
quick convergence because of the cell periodicity. The
magnetic field distribution op axis, however, is not pe-

The transfer matrix is reconstructed by particle tracking ifiodic and we added mirror image(see Fig.3). We modify a

the magnetic field which is given by TOSCA

few points nearby both the mirror boundaries, which are far

X b o ;
13D magnetic field calculation code: Vector Fields Limited(24 Bank-2way from the orbit, folC> class continuity by following

side, Kidlington, Oxford OX5 1JE, England)

conditions:
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Mirror Boundary D sector is larger than that in the F sectors, thealue
- Mirror Image variation in the D sector makes the bend on the tune shift
P NN around the energy’ = 150 ~ 180MeV.

Cond. 2 Modified

Figure 3: Mirror Image Connection

E D /F

1. first and second order derivative vanish at the mirror
boundary,

B(s)[m]

0O 05 1 15 2 25 3 35 4

2. field component and first order derivative are con- o]

nected continuously and second order derivative van-

ishatth t ifi [ [
ish at the boundary between modified region and given Figure 4: Beta function at the enerdyy= 26MeV

data region.
3.3 Tracking N T—— PR —
The equation of motion is integrated by Runge Kutta Gill Loss RN g
method and the betatron oscillation amplitude for initial S+ 2 =R \
condition is determined by following method: 1 ’
/ 178Me
1. calculate tune value,, from given amplitude series v, 1 205MeN 1 1MeV\
an = aor™ (0 <r < 1,we user ~ 1/3), JERIN \% R
17 B— e BTMAV.
2. select the amplitude, to satisfy|v,,+1— v, | less than D zsmev
required tolerance. RSN \
4 PERTURBATION METHOD 1731.68 : 1.685 1.6‘9‘“’/’/ 1.695 17 1.705 171 1715 172

l/"l/'
We can obtain the excitation dependence of the tune value o _
by the perturbation method for comparison. From the givehigure 5: Excitation dependence of the tune value with res-
central orbit and beta function, the tune shift is obtained aghance lines up to 8th order

1
AV f PEOLKEs, (18) .
T Hing Sy ——
001 " A0 0FZ(15IMEV) werveeeees ]

A of x(151MeV)

where(s) is beta function and\k(s) is an error term of

=3 Av of z(258MeV) =
Hill equation, which is given by the lowest order expansion & oos E
of equation of motion: 3,
1-n , S
Nkp==2,  Ak.= (19) o o
Z ’ RN
=-=Z  p=-— (20) _
Bz Oz qBz 0.015 ; 5 Ll
whereq andp are particle charge and momentum, respec- 002 e
tively. In this calculation, the central orbit and its beta func- 0deg]
tion at the energyy = 26MeV are used. .
Figure 6:6 dependence of integral tery‘gO B(s)Ak(s)ds
5 RESULTS
Figure 4 and 5 show a beta function and an excitation de- 6 REFERENCES

pendence of the tune value, respectively. In Figure 5, the

circle points show the tune values calculated by the trackl] Akira NODA, et al., “Development of Compact Proton Syn-
ing method and the square points show the tune values cal- chrotron with Combined Function Dedica_ted for Cancer
culated by the perturbation method. There is good agree- 1"€rapy”, Proceedings of the 11th Symposium on Accelera-
ment between two methods. Figure 6 shows the integral tor Science and Technolog_y, October 21-23, 1997, SPring-8,
term of the equation (18). Because the beta function in the Harima Science Garden City, Hyogo, Japan
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