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Abstract

When the momentum compaction factor is reduced to a
small value in order to achieve a very short bunch length
in electron or positron storage rings, fluctuations of path
lengths due to the emission of photons become non-
negligible.  This effect determines the achievable lower
limit of the equilibrium bunch length.  Analytical
expressions for this limit are formulated using lattice
parameters of a storage ring.  Some numerical examples
are presented.

1 INTRODUCTION
In electron or positron storage rings, it has been studied

to shorten the equilibrium bunch length by reducing the
momentum compaction factor in order to realize free
electron laser with an isochronous storage ring, coherent
synchrotron radiation, etc.[1-3].   All of these studies are
based on the following conventional formula which gives
the relation between the equilibrium bunch length στ and
the momentum compaction factor α0:

στ = α0/Ωs σδ ∝ α0
1/2

, (1)

where Ω s is the angular frequency of synchrotron
oscillation and σδ is the equilibrium momentum spread.
According to this formula, the equilibrium bunch length
can eventually become zero at the limit of α0 = 0.
  In deriving Eq. (1), however, it was neglected that the
path length of each electron in a bunch is fluctuating by
emitting photons. The magnitude of this fluctuation
depends on local parameters of the ring, like dispersion
functions, at the positions where photons are emitted.  If
we want to take account of this effect, we can no longer
adopt the conventional method of calculating bunch
lengths by rotating equilibrium momentum spread in a
longitudinal phase space with a constant value of α0.

In the following we derive a set of formulas to calculate
the equilibrium bunch length when the fluctuation of path
lengths are taken into account[4].

2 EQUILIBRIUM BUNCH LENGTHS
If we denote the fluctuation of path lengths in one

revolution due to the emission of photons by ∆L, the
expectation value of a bunch spread caused by this
fluctuation is written as

∆L − ∆L
2

,

where the average represented by the double parenthesis
<<...>> is to be taken over both the ensemble (i.e. over
electrons in a bunch) and the path (i.e. positions of
photon emission).  This bunch spread will grow turn by
turn if damping in the longitudinal direction does not
exist.  In actual rings, however, there exists the radiation
damping.  Since the diffusion rate is <<(∆ L -
<<∆L>>)2>>/T0 and the damping rate is -2A2/τε, where
T0, A and τε are the revolution period, "amplitude" of the
bunch spreading and the longitudinal damping time,
respectively, the equilibrium half-bunch length due to the
fluctuation of path lengths is given by[5]

Aeq = τε / 4T0 ∆L − ∆L
2

. (2)

We define here the "fluctuation" part of the momentum
compaction factor by

αs≡
∆L − ∆L

2

L0
2 ∆p /p0

2
, (3)

where L0 is the circumference of the ring, ∆p/p0 is the
deviation of momentum due to the emission of photons
in one revolution, and the single parenthesis <...> means
the average over the ensemble (i.e. over electrons in a
bunch).  By using Eq. (3), we can rewrite Eq. (2) as
follows:

Aeq = L0 αs σδ . (4)

Then, combining Eq. (1) and Eq. (4), we obtain the
following expression for the equilibrium bunch length
when the fluctuation of path lengths exists:

στ = α0 /Ωs
2 + T0αs

2 σδ . (5)

When α0 >> α s, the bunch length is proportional to
the square-root of α0, as shown in Eq. (1).  The effect of
the fluctuation of path lengths sets in when α0 is reduced
to about zero by controlling optics of the ring[6-8].  In
the case of α0 = 0, Eq. (5) gives the lower limit of

στ = T0αsσδ . (6)

This limit is different from the stability limit caused by
nonlinearity of the momentum compaction factor[6-8].

3 ANALYTICAL FORMULAS
In this section we derive analytical expressions for the

"fluctuation" term α s.  To do this, we assume the
following:

• Circulating electrons or positrons are ultra-
relativistic and the ratio of a momentum variation
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to the nominal value is equivalent to that of an
energy variation.

• There is no correlation among all events of photon
emission in one revolution.  In other words, the
radiation loss per revolution is quite small
compared with the reference energy of circulating
particles.

• The equilibrium momentum spread σδ is also small
compared with the reference energy of circulating
particles and the variation of radiation loss for each
particle can be neglected as the first approximation.

• All events of the photon emission are purely
stochastic and averaging these over ensembles can
be performed independently.

Under these assumptions, we start from an expression
for the fluctuation of path length caused by the emission
of photons.  In the lowest order of perturbation it is
written as

∆L = ds
η(s)δi + xβ(s; si,δi)

ρ(s)
si

L0

∑
i=1

N

, (7)

where ρ(s) is the radius of curvature of the orbit at the
position s , η(s)  is the horizontal dispersion function, si
is the position where the i-th photon is emitted, N is the
number of emitted photons in one revolution, δi ≡
(-ui)/E0 is the ratio of the energy change due to the photon
emission to the nominal energy, and xβ represents the
horizontal betatron oscillation excited by the photon
emission. Then, the average <<∆L>> can be calculated as

∆L = ∆Lη + ∆Lβ , (8)

where <<∆Lη>> and <<∆Lβ>> are contributions from
equilibrium orbit shifts and betatron oscillations,
respectively, and are given by

∆Lη =
1

L0

dsi
0

L0

ds
si

L0 η(s)N δ

ρ(s)
, (9a)

∆Lβ =
1

L0

dsi
0

L0

ds
si

L0 xβ(s;si, N δ )

ρ(s)
. (9b)

The square of a deviation from the average is given by

(∆L- ∆L )
2
= ∆1 + ∆2+∆3 , (10)

where

∆1 = ds
si

L0∑
j=1

N

ds′
sj

L0 η(s)η(s′) δi δj

ρ(s)ρ(s′)
∑
i=1

N

−2 ∆Lη ds
si

L0 η(s)δi

ρ(s)
+ ∆Lη

2
,∑

i=1

N

(11a)

∆2 = ds
si

L0∑
j=1

N

ds′
sj

L0 xβ(s; si, δi) xβ(s′; sj, δj)

ρ(s)ρ(s′)
∑
i=1

N

−2 ∆Lβ ds
si

L0 xβ(s; si, δi)

ρ(s)
∑
i=1

N

+ ∆Lβ
2 , (11b)

∆3 = 2 ds
si

L0∑
j=1

N

ds′
sj

L0 η(s)δi xβ(s′; sj, δj)

ρ(s)ρ(s′)
∑
i=1

N

−2 ∆Lβ ds
si

L0 η(s)δi

ρ(s)
∑
i=1

N

−2 ∆Lη ds
si

L0 xβ(s; si, δi)

ρ(s)
∑
i=1

N

+ 2 ∆Lβ ∆Lη . (11c)

From Eqs. (3) and (10), we have

αs = αs1
2 + αs2

2 + αs3
2

, (12)

where

αsi≡
∆i

L0
2

N δ2
, i= 1, 2, 3. (13)

By dividing the double summation in Eq. (11a) into
diagonal and off-diagonal contributions and averaging each
part over the ensemble and the path, we obtain the
following expression for αs1 :

αs1
2

=
1

L0
3

dsi
0

L0
ds

si

L0 η(s)

ρ(s)

2

. (14)

It is worth mentioning that the process of the photon
emission has the Poisson-type probability distribution
and hence (N−N )

2
= N , which we used in deriving the

above expression.
The term αs2 can be calculated by using the following

expression for the betatron oscillation:

xβ(s; si, δi) = η(si) δi cos ( ϕ(s)−ϕ(si))

= β(s)H(si)δi cos(ϕ(s)−ϕ0i) , (15)

where

H(s)= γ(s)η(s)
2

+ 2α(s)η(s)η′(s) + β(s)η′(s)
2
, (16)

η′ (s)=
dη(s)

ds
, (17)

ϕ0i = ϕ(si) −Arccos η(si)/ β(si)H(si) , (18)

and (α(s), β(s), γ(s)) and ϕ(s) are the Twiss parameters
and the betatron phase, respectively[5].  By substituting
Eq. (15) into Eq. (11b) and taking the average, we have

αs2
2

=
1

L0
3

dsi H(si)
0

L0

× ds
si

L0 β(s)

ρ(s)
cos(ϕ(s) −ϕ0i)

2

. (19)

The term αs3 is calculated in a similar manner and we
obtain

αs3
2

=
2

L0
3

dsi H(si)
0

L0
ds

si

L0
ds′

si

L0 η(s) β(s′)
ρ(s)ρ(s′)

×cos(ϕ(s′)−ϕ0i) . (20)
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Note that the phase ϕ runs from 0 to 2π and the integral
in Eq. (20) gives almost zero.  We then have

αs3 ≈ 0 . (21)

By substituting Eqs. (14), (19) and (21) into Eq. (12)
and using Eq. (5), we can calculate the equilibrium bunch
length when the fluctuation of path lengths exists.

4 NUMERICAL EXAMPLES AND
DISCUSSION

In this section we give some numerical results.   As an
example, we take a high-energy electron storage ring of
SPring-8.  This ring is of double-bend achromat (DBA)
type with a beam energy of 8GeV, a typical value of the
natural emittance of 7nmrad and a circumference of
1436m.  For this ring with a typical optics, we have α0 =
1.46×10−4, α s1 = 8.44×10−4 and α s2 = 4.76×10−6.
Then, from Eq. (5), we can calculate contributions from
α0, α s1 and α s2 to the equilibrium half bunch length in
the nominal operation.  The resulting values are 3.6mm,
0.13mm, and 0.007mm, respectively.  We then see that
the effect of the fluctuation of path lengths is about 4% in
this case.  However, the effect of fluctuation terms
becomes significant when we lower the conventional
momentum compaction factor α0.

To see the dependence of the bunch length on α0, we
performed a model calculation by breaking the achromat
condition and leaking the dispersion function η  in the
outside of the arc section.  For simplicity, we assumed
that η  keeps a symmetric form in the arc between two
bending magnets (see Fig. 1).  In this model the
dispersion function in a bending magnet can be written in
the form of

η(s) = ηin + ρ0 – ρ0cos(( s– sin) /ρ0 ) , (22)

where η in is to be varied to lower the value of α0.  The
results are shown in Fig. 2, where the equilibrium half
bunch length is plotted as a function of α0.  The dashed
curve is a contribution from α0, the dotted curve is that
from α s and the solid curve is the sum of these
contributions.  Contributions from αs2 were neglected in
these calculations.  The limit value at α0=0 is 0.3µm.
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Figure 1:  A model dispersion function to calculate the
equilibrium bunch length.

Note that though this limit value is small for the
SPring-8 storage ring, it can be significant for a small
ring with a low momentum compaction factor.  This is
expected because αs1 is proportional to the third power of
the bending angle (see Eq. (14)).

We finally note that essentially the same results as
obtained in the previous section were derived in Ref.[9]
with a different method.  The derivation shown in this
work is complementary to that and will be useful for
further and detailed considerations.

REFERENCES
[1] H. Hama, S. Takano and G. Isoyama, Nucl. Instr.

and Meth. A392 (1993) 29.
[2] A. Nadji, P. Brunelle, M. P. Level, M. Sommer and

H. Zyngier, Proceedings of the 4th European Particle
Accelerator Conference (1994) 128.

[3] D. Robin, R. Alvis, A. Jackson, R. Holtzapple and
B. Podobedov, Stanford Linear Accelerator Center,
SLAC-PUB-95-7015 (1995).

[4] H. Tanaka, unpublished note (1996).  (All results
presented here are based on this note.)

[5] See, e.g., M. Sands, SLAC-121 (1970), Stanford
Linear Accelerator Center.

[6] A. Ando and K. Takayama,  IEEE Trans. Nucl. Sci.,
Vol. NS-30, No.4 (1983) 2604.

[7] C. Pellegrini and D. Robin, Nucl. Instr. and Meth.
A301 (1991) 27.

[8] D. Robin, E. Forest, C. Pellegrini and A. Amiry,
Phys. Rev. E48 (1993) 2149.

[9] Y. Shoji, H. Tanaka, M. Takao and K. Soutome,
Phys. Rev. E54 (1996) R4556.  Y. Shoji, A. Ando,
H. Tanaka and M. Takao, Nucl. Instr. and Meth.
A390 (1997) 417.

10-4

10-3

10-2

10-1

100

101

10 -13 10 -11 10-9 10-7 10-5 10-3

H
al

f 
B

un
ch

 L
en

gt
h 

[m
m

]

α
0

SPring-8 
8GeV

Figure 2:  The equilibrium half bunch length in the
SPring-8 storage ring as a function of the conventional
momentum compaction factor α0.
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