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Abstract

Cavity loss factors can be easily computed for ultrarela-
tivistic beams using time-domain codes like MAFIA or
ABCI. However, for non-ultrarelativistic beams the prob-
lem is more complicated because of difficulties with its nu-
merical formulation in the time domain. We calculate the
loss factors of a non-ultrarelativistic bunch and compare
results with the relativistic case.

1 INTRODUCTION

It is common to believe that loss factors of a bunch mov-
ing along an accelerator structure at velocityv = �c with
� < 1 are lower than those for the same bunch in the ul-
trarelativistic case,� ! 1. The loss factors are then com-
puted numerically for the ultrarelativistic bunch, which is
a relatively straightforward task, and considered as upper
estimates for the case in question,� < 1.

We study�-dependence of loss factors in an attempt to
develop a method to obtain answers for� < 1 case from
the results for� = 1. It is demonstrated that the above as-
sumption on the upper estimate might be incorrect in some
cases, depending on the bunch length and properties of the
structure (cavity + pipe) under consideration.

2 BEAM COUPLING IMPEDANCE AND
LOSS FACTORS OF A CAVITY

In the frequency domain and in the ”closed-cavity” approx-
imation (which means very narrow beam pipes) the beam
coupling impedance calculation can be reduced to an inter-
nal eigenvalue boundary problem. Let~Es, ~Hs be a com-
plete set of eigenfunctions (EFs) for the boundary prob-
lem in a closed cavity with perfect walls. The longitudinal
impedance is then given by (e.g., [1])
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where Is(�; !) =
R
L
dz exp(�i!z=�c)Esz(0; z) is the

overlap integral, andWs is the energy stored in thes-th
mode. HereEsz(0; z) is the longitudinal component of the
s-th mode electric field taken on the chamber axis.

There is a resonant enhancement of thes-th term in the
series (1) forZ(�; !) as! ! !s. Let us introduce a fi-
nite, but small absorption into the cavity walls by adding
an imaginary part to the eigenvalue:!s ! !0s � i!00s =

!0
s
(1 � i=2Qs). Here the Q-value of thes-th mode is

Qs = !0
s
Ws=Ps � 1, wherePs is the averaged power

dissipated in the cavity walls ( plus, in a real structure, due
to radiation into beam pipes). For! ' !0

s
thes-th term in

Eq. (1) dominates:
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The quantityRs(�) is the shunt impedance of thes-th cav-
ity mode, and, unlike theQ-factor, it depends on�.

The beam loss factor is

k =
1

�

Z
1

0

d! ReZ(�; !)j�(!)j2 ; (3)

where�(!) =
R
ds exp [i!s=(�c)]�(s) is a harmonic of

bunch spectrum. For a Gaussian bunch with rms length
2l, the line density is�(s) = exp (�s2=2l2)=(p2�l) and
�(!) = expf�[!l=(�c)]2=2)g. Assuming allQs >> 1

and integrating formally Eq. (1) for theReZ(�; !), one
can express the loss factor as a series
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where the loss factors of individual modesks in the last
equation are written for the Gaussian bunch.

In principle, Eq. (4) give us the dependence of the loss
factor on�. However, the answer was obtained in the
“closed-cavity” approximation. Moreover, it is practical
only when the number of strong resonances is reasonably
small, since their the�-dependence varies from one reso-
nance to another:
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where
 = 1=
p

1� �2. It is obvious from Eq. (5) that for
long bunches loss factors will decrease rapidly with� de-
crease, asexp

����2�. Indeed, the lowest resonance fre-
quencies are!0

s
� c=d, whered is a typical transverse size

of the cavity. The exponent argument�(l=d)2 will have
a large negative value forl � d, and the exponential de-
crease for small� will dominate the impedance ratio. The
impedance ratio dependence on� is more complicated, and
we consider below a few typical examples.
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3 EXAMPLES

3.1 Cylindrical Pill-Box

For a cylindrical cavity in the limit of a vanishing radius of
beam pipes,b ! 0, one can obtained explicit expressions
of the mode frequencies and impedances, e.g., [1]. Let the
cavity length beL and its radius bed. The mode index
s = (m;n; p) means that there arem radial variations and
p longitudinal ones of the modeE-field. The resonance
frequency is!mnp =

p
�2mn + (�pd=L)2c=d, where�mn

is then-th zero of the first-kind Bessel functionJm(x). The
longitudinal shunt impedance is
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The upper line inf: : :g corresponds to evenp and the lower
one to oddp, and� is the skin-depth.

The ratio of loss factors Eq. (5) for the lowestE-mode,
E010, is then
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Obviously, it is almost independent of� when the bunch
is short,l � d, and the cavity is short compared to its ra-
dius,L � d. For longer cavities, however, the ratio oscil-
lates and might exceed 1. This strong resonance behavior
is clearly seen in Fig. 1 for largeL=d, while for smallL=d
thek-ratio slowly decreases with� decrease. For some par-
ticular parameter values,k010(�) can be many times larger
thank010(1). A picture for a longer bunch is similar except
the resonances at small�s are damped heavily.
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Figure 1: Ratio of loss factors (7) for a short bunch,l=d =
0:05, versus� and resonator lengthL=d.

3.2 APT 1-cell Cavity

As a more realistic example, we consider an APT super-
conducting (SC) 1-cell cavity with a power coupler [2]. Of
course, such a cavity with wide beam pipes to damp higher
order modes can not be described completely by the for-
malism of Sect. 2, except for the modes below the pipe
cutoff. Direct time-domain computations with the codes
MAFIA [3] and ABCI [4] show the existence of only 2
longitudinal modes below the cutoff for the� = 0:64 cav-
ity, and only 1 for� = 0:82, in both cases including the
fundamental mode atf0 = 700 MHz. The loss factor con-
tributions from these lowest resonance modes for a Gaus-
sian bunch with the lengthl = 3:5 mm for � = 0:64, and
l = 4:5 mm for � = 0:82, are about 1/3 of the total loss
factor.

We use MAFIA results for the field of the lowest mode
to calculate the overlap integral and study the loss factor
dependence on�. The on-axis longitudinal field of the
fundamental mode is fitted very well by a simple formula
Ez(z) = Ez(0) exp [�(z=a)

2], wherea = 0:079 m for
� = 0:64 anda = 0:10 m for � = 0:82, see [5] for detail.
The ratio of the shunt impedances in Eq. (5) is then easy to
get analytically
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where! = 2�f0. The resulting dependence shows a
smooth decrease at lower�s. The loss factor for the lowest
mode for� = 0:64 is 0.614 times that with� ! 1, and for
� = 0:82 is 0.768 times the corresponding� = 1 result.

3.3 APT Cavity, 5 cells

For 5-cell APT SC cavities the lowest resonances are split
into 5 modes which differ by phase advance per cell��,
and their frequencies are a few percent apart [2]. We use
MAFIA results [6] for these modes to calculate their loss
factors according to Eq. (4). The on-axis fields of two
modes, with�� = 0 (0-mode) and�� = � (�-mode),
which is the cavity accelerating mode, are shown in Fig. 2.

Time-domain simulations with the code ABCI [4] give
us the loss factor of a bunch at� = 1. The loss factor
spectrum for the� = 0:64 cavity, integrated up to a given
frequency, has two sharp steps: one near 700 MHz with
the height 0.5 V/pC and the other near 1400 MHz with the
height about 0.1 V/pC. They correspond to the two bands
of the trapped monopole modes in the cavity, cf. Table 1.

We calculate numerically overlapping integrals in Eq. (4)
for a given�. The results for the loss factors of the lowest
monopole modes are presented in Table 1. The totals for
the TM010 and TM020 bands for� = 1 in Table 1 agree
very well with the time-domain results. In fact, we are
mostly concerned about only these two resonance bands,
since the higher modes are above the cutoff, and they prop-
agate out of the cavity into the beam pipes depositing most
of their energy there. Our results for the design values of�

are in agreement with those obtained in [2]. Remarkably,
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Figure 2: Longitudinal on-axis electric field (arbitrary
units) for 0-mode (dashed) and fundamental (�-) mode in a
half of the 5-cell APT� = 0:82 cavity.

the total loss factors for a given resonance band in Table 1
are lower for the design� than at� = 1. The only ex-
ception is the TM020 band for the� = 0:82 cavity, but it
includes some propagating modes, and its contribution is
very small.

The �-dependence of the loss factor for two TM010
modes mentioned above (0- and�-mode) is shown in Fig.
3. Obviously, the shunt impedance (and the loss factor)
dependence on� is strongly influenced by the mode field
pattern.
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Figure 3: Loss factor ratio vs� for 0-mode (dashed) and
fundamental (�-) mode in the 5-cell APT� = 0:82 cavity.

4 SUMMARY

The examples above compare loss factors for� < 1 with
� ! 1 results. More details can be found in [5]. Essen-
tially, the frequency-domain approach has been applied in-
stead of the time-domain one. It can be done only when we
know the fields of all modes contributing significantly into
the loss factor. Nevertheless, for many practical applica-
tions, including SC cavities, the lowest mode contribution
is a major concern, because propagating modes travel out
of the cavity and deposit their energy away from the struc-
ture cold parts.

Table 1: Loss Factors (in V/pC) in APT 5-cell Cavities
�� f , MHz k(�) k(1) k(�)=k(1)

� = 0:64, TM010-band
0 681.6 7:2 10�6 3:7 10�4 0.020

2�=5 686.5 4:8 10�5 2:9 10�2 0.0016
3�=5 692.6 1:1 10�4 0.218 0.0005
4�=5 697.6 1:2 10�3 0.250 0.0049
� 699.5 0.184 9:2 10�3 19.92

Total 0.185 0.507 0.365
� = 0:64, TM020-band

0 1396.8 6:5 10�4 5:4 10�4 1.187
2�=5 1410.7 1:2 10�6 9:0 10�4 0.0014
3�=5 1432.7 1:8 10�5 0.0173 0.0011
4�=5 1458.8 8:0 10�7 0.0578 1:4 10�5

� 1481.0 3:5 10�7 0.0095 3:7 10�5

Total 6:7 10�4 0.086 7:8 10�3

� = 0:82, TM010-band
0 674.2 0:3 10�6 6:9 10�4 4:5 10�4

2�=5 681.2 7:3 10�5 1:6 10�5 4.64
3�=5 689.9 1:8 10�6 0.034 5:1 10�5

4�=5 697.2 1:3 10�3 0.220 5:9 10�3

� 699.9 0.285 0:240 1.188
Total 0.286 0.494 0.579

� = 0:82, TM020-band
0 1357.7 4:2 10�5 0:8 10�6 52.4

2�=5 1367.7 1:4 10�4 8:0 10�5 1.71
3�=5 1384.5 1:6 10�6 1:4 10�4 0.011
4�=5� 1409.6 8:0 10�7 1:3 10�3 5:6 10�3

��� 1436.9 1:6 10�2 2:2 10�3 7.5
Total 1:6 10�2 3:7 10�3 4.32

�Mode near the cutoff.
��Propagating mode, above the cutoff.

One interesting observation is that the loss factor of an
individual mode at some� < 1 can be many times larger
than for� = 1. Obviously, one should exercise caution in
using� = 1 results as upper estimates for a� < 1 case.
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