
GENERAL PARTICLE TRACER: A 3D CODE FOR ACCELERATOR AND
BEAM LINE DESIGN

S.B. van der Geer, M.J. de Loos, Pulsar Physics,
De Bongerd 23, 3762 XA Soest, The Netherlands

Abstract

The General Particle Tracer (GPT) code is a well
established simulation platform for the study of charged
particle dynamics in electromagnetic fields. The code is
completely 3D, including the space-charge model.
Because of its modern implementation, GPT can be
conveniently customized without compromising its ease
of use, accuracy or simulation speed. In this paper we will
present the latest version of GPT, version 2.40.

This newest release is twice as fast, is capable of
simulating different types of particles simultaneously and
includes many new elements. The new integration method
is based on a fifth order embedded Runge-Kutta method
with adaptive stepsize control to ensure both accuracy and
speed in solving the particle’s equations of motion in time
domain. Furthermore any additional differential equations
can be solved while tracking the particles.

GPT features also include complete freedom in the
initial particle distribution and the flexibility to position
and orient all beam line components. Separate utility
programs calculate macroscopic quantities, produce
ASCII and graphical output and automate parameter
scans.

In this paper we report on the internal structure of the
General Particle Tracer. In addition various pre- and
postprocessors, combined in the integrated Windows
95/NT based graphical user interface, will be described.

1 INTRODUCTION
The General Particle Tracer (GPT) [1,2] is a software

package developed to study 3D charged particle dynamics
in electromagnetic fields. The purpose of GPT is to aid in
the design of accelerators and beam lines by using
modern, particle tracking techniques

GPT is capable of tracking any number of particles
through complex electromagnetic fields taking all 3D
effects and space-charge forces into account. This
produces highly accurate and reliable results. GPT offers
these capabilities in a very user friendly and easy to
customize package. Due to the general character of the
code and its flexibility, GPT is suited for a large number
of purposes.

The fields of physical structures are represented by so
called elements. GPT comes with a large set of standard
elements for basic structures such as solenoids,

quadrupoles and accelerating structures. However, for
specific cases custom elements can easily be added.

Elements can be positioned anywhere and in any
direction in 3D space. This gives the user complete
freedom in constructing the experiment and also
components placed off center or rotated can be simulated.
The effect of fringe fields can be taken into account and
measured or externally calculated fields can be used in the
simulation.

The equations of motion for the macro-particles are
solved relativisticly in the time-domain using a 5th order
embedded Runge-Kutta integrator with adaptive stepsize
control. This allows the user to select the required
accuracy, while the simulation time is always kept to a
minimum.

The GPT package consists of the GPT kernel which
performs the actual calculations, an extensive set of pre-
and postprocessors including data analysis tools and a
graphical user interface.

2 THE GPT KERNEL
A schematic of the GPT executable is shown in

figure 1. The following subsections describe the
individual components in detail.

2.1 Inputfile

The GPT executable starts by reading one or more
ASCII inputfile(s) describing the simulation to perform.
The inputfile specifies the initial particle distribution, the
3D electromagnetic field configuration (set-up), the
required accuracy of the calculations and the output
method. Standard expressions, functions and user defined
variables can be used for convenience. Optionally, an
MR-file (Multiple Run) can be used to automatically scan
any number of parameters.

2.2 Initial particle distribution

The initial particle distribution consists of a number of
macro-particles, each typically representing a large
number of elementary particles. The distribution can be
specified by using any combination of the built-in particle
generators or an external file.

Complicated particle distributions can be composed of
any number of separate particle distributions, i.e. a beam
with a halo or a mixture of different ion species each
having their own distribution function.

1245

2.3 Set-up

The set-up defines the 3D electromagnetic field
configuration as generated by the beam line components.
It can be composed of any number of built-in elements,
external 2D or 3D field-maps and user defined
expressions in custom elements. There is no limit to the
number, location and orientation of the elements.

The field-map elements can read electromagnetic field
configurations calculated by external programs like
TOSCA and the SUPERFISH set of codes. Also measured
field information can be used in the calculations.

To increase the flexibility of GPT, users can easily
write their own elements for specific configurations. The
interface for writing custom elements is very broad and
covers the development of user defined electromagnetic
field configurations, custom initial particle distributions,
interfaces to other codes and additional differential
equations.

All GPT elements are developed in their own
coordinate system and written in separate source files.
These files are platform independent and allow users to
freely exchange elements with each other without having
to modify the GPT kernel. When an element is positioned
in 3D space, the GPT kernel takes care of all required
coordinate transformations.

2.4 Space-charge

The self-fields of the particles are also part of the
electromagnetic fields through which the particles are
tracked. Space-charge effects can be calculated using a
1D, 2D or 3D model depending on the type of simulation.

The one dimensional model can only be used for beams
with a constant radius. For the simulation of cylindrical

symmetric (semi)continuous beams the 2D space-charge
model can be used. It is a relativistic point-to-ray
interaction model and it interprets particles as moving
rays with a homogeneous linecharge density. The 3D
routine consists of a 3D relativistic point-to-point model
[3]. This version makes no assumptions about particle
distribution, and is therefore well suited for all design
problems.

2.5 Equations of motion

The equations of motion for the macro-particles are
solved relativsticly in the time-domain using a 5th order
embedded Runge-Kutta integrator with adaptive stepsize
control [4]. When required, the individual particle
coordinates can be obtained with an accuracy of 10–10. The
adaptive timestep mechanism modifies the stepsizes
according to the gradients of the electromagnetic fields to
ensure that all output satisfies the user specified accuracy.

Optionally, the equations of motion are combined with
additional differential equations. This mechanism can be
used to calculate beam-loading or FEL interaction
completely self-consistently.

2.6 Output methods

GPT has two available output modes: time and position
output. Time output writes all particle coordinates at user
specified time(s). Position output writes all particle
coordinates passing any plane in 3D space. This output
mode is also known as “nondestructive screen” output.
Time and position output can be freely mixed and any
number of time and position outputs can be specified.

Optionally, the electric and magnetic fields at the
particle coordinates are also output. This can greatly aid in
understanding the particle dynamics.

GPT: Executable

MR: Parameter scans

Inputfile parser / parameter expansion

Inputfile

Hierarchical particle
database

Optional external
particle coordinates

1D/2D/3D Field maps

Interpolated position outputTime domain output

Initial particle distribution Equations of motion:

()dp

dt

d mv

dt
q E v B

r r

r

r

r

= = + ×
γ

User defined 3D set-up

5th order embedded
Runge-Kutta solver

Accuracy specification
Additional diff. equations

Superfish
TOSCA
Etc.

Built-in elements

1D/2D/3D Self-fields

Custom field elements

User specified
field equations

Figure 1: Schematic of the GPT executable.

1246

3 PRE- AND POSTPROCESSING
Being able to simulate charged particle dynamics in

time-dependent 3D electromagnetic field configurations is
usually far from sufficient for serious accelerator and
beam line design. The simulation data must be analyzed,
parameters must be scanned and typically a comparison
must be made between different scenarios.

GPT is accompanied by a number of pre- and
postprocessing programs as well as interfaces to other
software packages to ease this design process. These tools
are combined with GPT and integrated into the Windows
95/NT based graphical user interface, GPTwin. GPT on
UNIX machines uses command-line versions of these
programs. The typical data flow within GPTwin is shown
in figure 2. The following subsections describe the
individual components in detail.

3.1 GPTwin

GPTwin is the all-integrated Windows 95/NT based
user interface for GPT. It provides a standard editor with
on-line help capabilities for editing the inputfile.
Inputfiles can be run and combined with any number of
pre- and postprocessing tools. GPTwin is able to directly
plot the output of GPT as well as the results of data
analysis tools like GDFA.

Any number plots can be shown in separate windows

within the GPTwin user interface. When more windows
show different views of the same outputfile, the hierarchy
between the different views always remains synchronized.

3.2 The GDF format

The GPT results are written to a binary file for off-line
analysis and interpretation. The file is written in the
General Datafile Format (GDF), a multi-purpose,
hierarchical file format specifically designed for
efficiently storing large quantities of numerical data. It
allows the post-processing components to easily extract
information. The GDF format is used throughout the GPT
kernel, the analysis tools and the GPT elements to keep
the code compact and efficient. As shown in figure 2,
various conversion utilities are available to convert to and
from the GDF format.

3.3 GDFA

The main analysis program for GPT output is GDFA. It
calculates macroscopic beam parameters as function of
simulation time, position or any scanned parameter.
Typical macroscopic quantities like emittance, bunch
length, average energy and beam radius can be obtained,
but GDFA is capable of calculating many other useful
quantities. When needed, the list of GDFA programs can
be extended with custom code to calculate the beam
parameter of interest. GDFA maintains the original
hierarchy in the GDF file when more parameters are
scanned simultaneously.

4 CONCLUSION
The high accuracy, the possibility to add custom code,

the large number of standard elements and the user
friendly interface, all make GPT an attractive tool for
beam line and accelerator design. Especially the new
field-map elements and the ability to simulate different
particle species further enhances its capabilities. The
current status of the GPT project can be found on the web
at http://www.pulsar.nl/gpt

5 REFERENCES
[1] M.J. de Loos, et al, Proc. 5th Eur. Part. Acc. Conf.,

Sitges, (1996) pp. 1241.
[2] GPT User Manual, Pulsar Physics, Flamingostraat 24,

3582 SX Utrecht, The Netherlands.
[3] Ch. Bourat, CGR-MeV, Thesis 1988.
[4] W.H. Press, et al., Numerical Recipes in C,

Cambridge Univ. Press, 2nd edition, (1992) pp. 714.

GPTwin: Integrated User Interface

Hierarchical
particle database

GDF2DXF: Output for 2D
and 3D drawing packages.

GDF2A: Ascii output

GPT Inputfile:
Description of simulation to perform

MR-file:
Parameter scans

GPT: General Particle
Tracer

ASCI2GDF: Ascii field-
map converter

FISH2GDF: Superfish
converter

GDFA: Hierarchical
macroscopic data analysis.

GDFTRANS: Calculate
particle trajectories.

GDF2HIS: Calculation of
Histograms.

Figure 2: Typical data flow within GPTwin.

1247

