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Abstract

Dual harmonic RF systems have been discussed for many
years: to promote Landau damping, to reduce transverse
space-charge, and to improve Touschek lifetime. Since its
introduction into the CPS booster in 1982, the dual
harmonic acceleration process suffered from an
unexplained longitudinal instability occurring when the
2nd harmonic cavity is anti-phased and controlled by the
1st harmonic gap signal. The instability does not occur
when the beam fundamental is used as reference, nor
when the RF harmonics are in-phase. The impetus for the
present study arises from the conversion form harmonic
numbers h=5 & 10 to h=1 & 2 for LHC operation. The
instability has recently been diagnosed as a sextupole
mode. In this paper, which is a synopsis of two laboratory
notes [3,4], we present experimental results from machine
development (M.D.) periods, and a detailed theoretical
explanation for the instability (and its correction) that
considers feedback from the beam versus the cavity
fundamental.

1. INTRODUCTION
The present understanding of the PS Booster instability
builds upon two pieces of work. In 1994, Chapochnikova
[1] pointed out that (with dual harmonic) beyond a
critical bunch length Landau damping of all azimuthal
modes is lost. In 1996, Blas [2] proposed that the
instability is associated with the low level RF system loop
delays and the magnitude of the beam transfer function
from modulations of the 2nd harmonic RF to modulations
of the 1st harmonic beam current.

1.1. Machine Development Results
Also contributing to the explanation were the M.D.
experiments performed in 1997 and described by
Koscielniak [3]. The instability was diagnosed as a beam
sextupole mode (m=3) with oscillation frequency 3 fs and
3 nodes in the bunch shape; see Fig.1. There was no
evidence of modes m=1 or m=5. The instability is only
weakly dependent on beam current, and this excludes
impedance or beam loading or space-charge as the source
of the instability. Further corroboration of “not a beam-
loading instability” is the fact that RF feedback has been
implemented, with a substantial reduction of the apparent
cavity impedance, but the instability survives. There is no
instability when the 2nd harmonic RF is driven in-phase
with the 1st harmonic RF. Further, the instability is only
weakly dependent on the control technology (analogue or
digital).

Figure 1: bunch shape with 3 nodes.

These observations suggest that the instability is intrinsic
to the beam, albeit modified by the action of control
loops. Another feature of the instability is that the growth
rate increases when the gain of the second harmonic
corrector (SHC) loop is reduced, which suggests the
instability would be even stronger without the SHC loop.
A key observation is that short bunches (i.e. small
longitudinal emittance) are stable, whereas long bunches
of equal intensity (but large emittance) are unstable; and
this indicates some kind of ‘critical’ bunch length.

1.2. Beam Transfer Functions
Adding a second harmonic voltage component to the RF
waveform has three consequences:
• There are twice as many inputs and outputs
• All beam transfer functions are altered
• One must answer: “how do we synchronize the two

RF waves?”
The implication of the first item is that the beam response
is given by a matrix, with each of the elements given by a
frequency dependent transfer function:
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Each of the phase modulation transfer functions Bij

depends on the beam distribution (e.g. bunch length) and
on the relative amplitude and phasing of the voltage
components. For example, voltages in-phase gives short
bunch operation, whereas voltages anti-phased gives long
bunch operation. Moreover, each of the TFs is
contributed to by many azimuthal modes m. However,
since they are the only ones observed we shall restrict to
m=1,3. The phase of the 2nd harmonic beam component is
not monitored and the matrix components B21 and B22 are
not essential to our discussion.
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For the case of RF voltages in-phase, the synchrotron
frequency is a monotonic decreasing function of
amplitude; i.e. similar to the case of single RF system,
except the frequency spread is larger and the small
amplitude oscillation frequency is higher.
For the case of RF voltages anti-phased (voltage ratio

2/1/ 12 −=VV ) and non-accelerating RF buckets, the

computer program BTF [1,5] can calculate the relevant
transfer functions. Examples are given in Figs. 2 & 3.

Figure 2: B12 for small emittance bunch

Figure 3: B12 for large emittance bunch

The incoherent synchrotron frequency initially increases

with amplitude, reaches a maximum 07786.0 sc ωω =
at a critical amplitude rc=0.7235 (i.e. bunch length
233.105o), and then decreases toward zero. This implies
the oscillation frequency is not a single valued function of
amplitude (r); and so two P.V. integrals and residues
must be calculated. Moreover, where 0/ =∂∂ rsω  the

local density of oscillators per unit frequency becomes
infinite, leading to a resonant response of the form:

Equation 2: ∑ +−=
m

mmkmk sjsB 222
1,1 )( ωωβ  , where

k=1 or k=2 and cm mωω = .

2. CONTROL STRATEGIES
The issue of “how to synchronize” can be answered in
three possible ways:
• Perfect feed-forward of 2nd harmonic (academic)
• 2nd harmonic RF locked to voltage fundamental
• 2nd harmonic RF locked to beam fundamental.
The latter two cases of dual harmonic are elaborated in
the following sections and analysed according to the
Nyquist criterion. Consider a system with forward gain A,
and gain B in the feedback path. The open loop gain is
A×B. Assuming negative feedback, if there are
frequencies at which the phase-shift π−=∠AB  and the
gain 1≥AB  then the system will be unstable when the

loop is closed. If positive feedback is used, the system is
unstable if the clockwise phase-shift 0=∠AB  and the

gain 1≥AB  for certain frequencies.

2.1. 2nd RF locked to voltage fundamental
The control scheme is shown in Figure 4. K1 is the beam
phase loop gain and K2 is the second harmonic corrector
(SHC) gain. It should be evident that the beam response
B12 is outside the domain of control of the SHC loop.
Because there are several loops we must be careful to
specify which are closed and which is open. Suppose the
SHC loop is closed and the phase loop (at fundamental) is

opened just before the summing point of 1vφ∆  with
ref
v1φ . If the SHC gain is large, then phase φv2 is a copy of

φv1. Hence the open loop transfer function is:
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For short bunches, the dipole and sextupole resonances of
B11 and B12 are both damped progressively as m=1,3,5; so
if the gain-delay product is small enough for stability at
m=1, then it is also small enough at the higher
resonances. As the bunch is lengthened, so the sextupole
mode becomes more prevalent, particularly for excitation
by 2nd harmonic, and the form of B12 departs from that of
B11. For long bunches both B11 and B12 are multiply
resonant (with no Landau damping) at the same
frequency locations. Despite these changes, the gain and
phase-shift are probably not adequate to induce an
instability (even for bunches beyond the critical length)
unless there are delays in the feedback. However when
the phase-loop feed-back is delayed, then it is almost
inevitable that the additional negative phase-shifts will
induce an instability where the sum of B12 and B11, may be
large; such as in the vicinity of 3ωc. The open-loop Bode
plot for beam and phase loop with delay T=15µs confirms
that the phase passes through 0 clockwise where the gain
is large, and anti-clockwise where the gain is small; and
so the system is unstable
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2.2. Physical Explanation
In simple terms, the mechanism of instability is as

follows: the beam response is resonant at cω3  and at this

frequency the loop delay is large enough that the
correction pushes the beam in the wrong direction
because the correction uses information which is too old.

Figure 4: system schematic for 2nd harmonic locked to
voltage (bold line) or beam (dashed) fundamental

2.3. 2nd RF locked to beam fundamental
Suppose that φb1 replaces φv1 as the input to the phase
discriminator of the SHC, as indicated by the dashed line
in Figure 4. Imagine, now, that the SHC loop is closed on
the beam fundamental. This situation constitutes a
feedback with a slightly unusual topology. The beam
response B12 is inside the SHC loop and also partially
inside the phase-loop. As a consequence, it is the joint

beam response [ ] 112111 )1( vb BB φφ −=  which under

the control of the phase-loop (assuming the SHC gain is
large enough). At d.c. the response is exactly unity
whether bunches are long or short, so d.c. errors are not
amplified. At HF the response tends to zero. Further, the
resonances of B12 and B11 occur at approximately the same
frequencies, and exactly so for bunches longer than the
critical length. When one imagines the response of long
bunches, at the dipole and sextupole resonances, either or
both of two things can happen. (i) The transfer function

gain in the vicinity of the resonant frequencies cmω  will

be much reduced; and/or (ii) the denominator of the
transfer function behaves as a phase advance network.
The details depend on bunch length; but typically the
phase-advancing effect dominates at m=3 and the gain
reduction at m=1.

In more detail, let us ask: “is the system stable when the
beam-phase loop is closed?” We answer in terms of the
gain and phase of the open-loop transfer function:
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with loop delay T=15µs and K1 ≅ 25 kHz.

In the previous synchronisation scheme discussed, the
system was stable until we introduced the effect of loop
delay. However for the scheme discussed here, there may
be large phase-shifts due to loop delay but in the vicinity
of the m=3 resonance, the phase passes through 0
clockwise where the gain is small, and anti-clockwise
where the gain is large; and so the system is stable
according to the Nyquist condition.

2.4. Physical explanation
The mechanism of stabilisation is as follows. Suppose
that either due to drive by φv1

ref or spontaneous self-
excitation, the beam phase starts to oscillate; then the
SHC loop will generate a signal φv2 that, in turn, acts
through B12 (i.e. through the 2nd harmonic cavity) to
modify the initial oscillation φb1. This signal (which
includes a phase advance) is then acted upon by the beam
fundamental phase-loop. Actually, to be strictly correct,
the time-ordering depends on the relative band-widths of
the two loops.

3. CONCLUSION
The mechanism for the instability when feedback is from
the cavity has two ingredients:
• the large gain of the BTF when the bunch length

approaches or exceeds the critical length,
• the large phase-shifts that are contributed by the long

loop delays.
The critical length is that for which the derivative of
synchrotron frequency with respect to action is zero
The explanation for the stabilization when the feedback is
from the beam, is due to modification of the beam
transfer function via either a phase-advance mechanism
or/and a reduction of the gain.
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