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Abstract
A generalized Touschek scattering theory based on a

3-dimensional Gaussian velocity distribution is developed
to improve the accuracy of lifetime calculations. The new
theory agrees with the measurements better than the clas-
sical Touschek scattering theory if the dispersion is large,
rf bucket size is large, or vertical velocity spread is large.
Agreement with measurements is not perfect and some
possible additional beam loss mechanisms are discussed.

1. THEORY

Electrons in a bunch are under the influence of the
transverse and longitudinal focussing forces and, there-
fore, undergo betatron and synchrotron oscillations. A
binary Coulomb collision between a pair of electrons may
transfer their transverse momenta into longitudinal mo-
menta. The colliding particles are lost if the longitudinal
momenta after the collision is outside the momentum ac-
ceptance of the accelerator [1]. Many authors reviewed
the original theory, which has subsequently been known
as the “flat beam model” [2], because the beam volume is
assumed to be 3-D in configuration space but 1-D in ve-
locity distribution.

Electrons reach a thermal equilibrium when the ra-
diation damping is balanced by quantum fluctuations and
intrabeam scattering. We assume that the system is linear.
Liouville 's  theorem states that the phase space density is
constant along the particle trajectory which is an ellipse
with area given by the Courant Snyder constant. Further-
more, we assume that the core distribution is formed by
particles which undergo many collisions in one damping
time, which , according to the central limit theorem, gives
a Gaussian distribution:
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Courant-Snyder invariant for the off momentum particles,
α x , β x , γ x , and ηx  are the lattice functions,

x x  x' x'p x p xβ βδ η δ η= − = −, ' , δ p dp p=  is the mo-

mentum deviation, Ψ0 = )8/( 3
0 zyxN εεεπ  is the nor-

malization constant, ε x  and ε y  are the emittances,N0  is

the total number of particles in the beam, σ z  is the bunch

length, and σ δ  is the momentum spread. We assumed

that the vertical dispersion is zero.
Beam loss rate can be calculated by considering a

small volume d x = dxdydz3r  in which source particles

with velocities between 
r r r

v and v dv1 1 1+  are incident upon

the target particles in the same bunch at the same location
with velocities between 

r r r

v and v dv2 2 2+ . The number of

particles scattered into a solid angle dΩ'  in unit time
from this collision is the product of the flux of the inci-
dent particle, the differential cross section, and the num-
ber of target particles. The collision rate in the beam co-
ordinate system is [3]:
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bΨ is the distribution function in the beam

frame and ΩΩΩ dd /)';(σ  is the differential cross sec-

tion.
In the center-of-mass coordinate system of the col-

liding particles, let 
r

v1
'  and 

r

v2
'  be the velocity of each

particle after the collision, )vv( 21

rr

r

−=V  and

)'v'v(' 21

rr

r

−=V  be the relative velocities before and af-

ter the collision. For elastic collisions 
r r

V = V' . Let the z-

axis be in the direction of beam propagation, y vertically
upward, and x radially outward. Let the scattering angle

(angle between 
r

V  and 
r

V' ) be θ , the polar angle (angle

to the z-axis) for 
r

V  and 
r

V'  be χ  and χ ' , and the azi-

muth (angle around the z-axis) for 
r

V  and 
r

V'  be φ , and

φ ' .

The particle is lost if the longitudinal velocity after
collision is larger than the maximum positive velocity
allowed in the accelerator, γ χv dvmaxcos '> , or,

µχ 1cos'0 −<< , where )v/(vmax γµ d= , and  v >

dvmax γ . We now change variables from

)v,v,v( 2z2y2x  to the variables )v,v,(v 1z1y1x  minus
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the center of mass variables, (v, ,χ φ ), according to the

following relationships: v v 2v2x 1x x= − ,

v v 2v2y 1y y= − , v v 2v2z 1z z= − d v d V= d v3
2

3 3r

r

r

= − − 8 ,

v vx = sin cosχ φ , v vz = cosχ v vz = cosχ ,

v' vx = sin 'cos 'χ φ , v' vy = sin 'sin 'χ φ v' vz = cos 'χ ,

and d d dΩ' sin ' ' '= χ χ φ .

The differential cross-section for elastic Coulomb
scattering is according to Moller:

)sin/3sin/4(/4'/ 24422 θθσ −=Ω Vcrdd e
, where

re  is the classical electron radius, and c is the velocity of

light. The scattering angle θ  is related to the new vari-
ables by the relationship: 'coscoscos χχθ =

)'cos('sinsin φφχχ −+ , which can be obtained by con-

sidering the triangle formed by the vectors 
r

v  and 
r

v' , and
the fact that v v'= .

Then the beam lifetime at a point, s, is:
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The total beam lifetime can be obtained by averaging
1/τ(s) over s around the entire storage ring. A computer
code is written to calculate lifetime given by above equa-
tions.

2. ALS DATA

Beam lifetime of real machines such as the ALS is
clearly affected by many other processes which are not

included in the theory described above. For example, if
the pulse shape N(z) is  not Gaussian, it can be shown that
lifetime is modified by the form factor, Fτ =

)2
0/z2( Nσπ ∫∞∞− z)z(2 dN . Touschek scattered par-

ticles, which are “almost lost”, forms the high energy tails
in the particle velocity distribution and may significantly
reduce beam lifetime. Resonances and nonlinear effects
will also reduce beam lifetime. We attempt to include all
these effects in a heuristic form factor,
Fτ = τ measured/τ theory , for fitting theory with experi-

ments.
We adopt the following fitting procedure to make the

many-parameter fitting as unambiguous as possible: (1)
identify parameter regime where lifetime depends on
minimum number of parameters, (2) fit to the functional
dependencies of lifetime on the parameters.

Typical ALS beam parameters used for the present
study are: fs= 0.0075fo, rf bucket height (δRF/E)=0.027,
beam energy=1.522 GeV, single bunch current = 1.4 mA,
natural emittance = 3.4 x 10-9 m rad, natural energy spread
(σE/E) = 6.45 x 10-4, natural bunch length = 5.92 x 10-3 m,
momentum compaction factor = 1.6 x 10-3, averaged = βx

7.85 m, averaged βy = 8.34 m, circumference = 196.8 m,
emittance ratio = 1%, , unless otherwise specified. During
lifetime and beam size measurements the current per
bunch was varied by varying the number of bunches while
keeping the total current constant at 8 mA.

As a first step, we consider the functional depend-
ency of the current-lifetime product on beam current as
shown in figure 1. We have deliberately chosen the syn-
chrotron tune to be 0.0055 (rf bucket size = 0.018),
which is lower than the nominal value,  so that the life-
time is independent of the dynamic momentum aperture.
By choosing a lower rf voltage we have one less parame-
ter to worry about at this stage of fitting.

0.0

0.5

1.0

1.5

2.0

2.5

0.01 0.1 1 10

current (mA)

C
u

rr
e

n
t 

* 
Li

fe
tim

e
 (

m
A

 h
) 3D Model

Flat Beam Model

Measured

Figure 1. The current-lifetime product  versus beam
current. In this parameter regime the differences be-
tween the flat beam model (upper curve) and the 3-D
model is expected to be small as shown.
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Intrabeam scattering is negligible in the ALS for cur-
rents below 0.5 mA. We fit 2 parameters, the gas scatter-
ing time (τ gas ) and the form factorFτ  for the low current

part of the data shown in figure 1 by using the relation-
ship: )/(1/1/1 theorygasmaesured F τττ τ+= . The gas den-

sity is independent of current per bunch because we keep
the total current constant. We find a good fitting for Fτ =

0.7 and τ gas= 50 hours. The fitted gas scattering time is

consistent with measurements using other techniques. [5]
Intrabeam scattering and instabilities increase beam

lifetime for higher currents. We use the fitting parameter

F measured BM
ε γ γ= where γ measured is the measured

emittance growth rate and γ BM is the calculated IBS

growth rate according to Bjorken and Mtingwa [3]. The

value of γ measured is expected to be different from the

value of γ BM  because of at least two reasons: (1) pres-

ence of instabilities, (2) presence of high energy tails.
Raubenheimer [4] has shown that intrabeam Coulomb
scattering creates a small number of high energy electrons
which do not belong to the Gaussian core of the distribu-
tion. The core emittance of the Gaussian distribution ex-
cluding the high energy tail is significantly smaller (by
about a factor of 0.5) than the “total emittance” that in-
cludes the core and the high energy tail. We expect that
growth of the core emittance will make the lifetime longer
but the tail will make lifetime shorter through creation of
a beam halo. We findFε = 0.5 gives a good fitting which

is shown as the solid line in figure 1. The result is consis-
tent with the beam size and the bunch length measure-
ments [5], [6].

Figure 2. The dependencies of the measured and cal-
culated current-lifetime products on rf bucket size.
The broken line (1) represents the 3-D model where
the momentum acceptance is assumed to be equal to
the rf bucket height. , the solid line (2) represents the
3-D model for δ 1 =2.2 % and δ 0  = 4%, and the dot-

ted line (3) represents the flat beam model for
δ 1 =2.2 % and δ 0  = 4%. ALS data is shown in cir-

cles.
Figure 2 shows the dependencies of the measured and

calculated current-lifetime products on rf bucket height.
The broken line represents the 3-D model where the mo-
mentum acceptance is assumed to be equal to the rf
bucket height. ALS data (circles) show that lifetime satu-
rates for rf bucket sizes larger than about 2.2 %, presuma-
bly because the momentum acceptance is smaller than the
rf bucket height. The momentum acceptance for such
large momentum deviations is determined by nonlinear
beam dynamics. The “dynamic momentum acceptance”
can be estimated from the data in the following way. The
dynamic momentum acceptance of the accelerator, δ A (s)

, can be approximated as a square function with a constant
value (δ 0 ) at non-dispersive regions and another constant

(δ 1 ) at dispersive regions. We have the best fitting for

δ 1 =2.2 % and δ 0  = 4% for the ALS data which is shown

as the solid line in figure 2. The results agree with models
calculations. [7] The solid line also shows that beam life-
time becomes shorter for larger rf bucket heights, which,
we believe, is due to the shortening of the bunch length.
The dotted line represents the flat beam theory which is
about 20 % longer than the new theory for the nominal
condition Smaller dynamic momentum aperture in the
dispersive region makes the difference between the flat
beam model and the 3-D model more pronounced as
shown in figure 2.

3. CONCLUSIONS

New theory fits the ALS lifetime data better by about
20 % than the flat beam theory . For nominal conditions,
ALS lifetime is smaller than predicted by the new theory
by a factor of 0.7. High energy tails produced by “almost
lost” particles and resonances can be the cause of the
shorter beam lifetime.
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