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Abstract

   Equations are derived which describe the evolution of
the second order moments of the beam distribution
function in the ionization cooling section of a muon
collider.  Ionization energy loss, multiple scattering, and
magnetic fields have been included, but forces are
linearized.  A computer code using the equations agrees
well with tracking calculations.  The code is extremely
fast, and can be used for preliminary design, where such
issues as beam halo, which must be explored using a
tracking code, are not the focus.

1 INTRODUCTION
One of the most fundamental problems in designing a

muon collider is the initial cooling of the muons.  Not
only must the muons be cooled in order to accelerate
efficiently, but the success of the cooling effectively
determines the acceptance of the machine, thus putting an
upper limit on the luminosity.  Decreases in transverse
emittance of almost three orders of magnitude, and in
longitudinal by more than one, are necessary.  

Because of the short lifetime of the muons, the optimal
cooling method appears to be ionization cooling.  This
method produces transverse cooling by passing the beam
through material, thus decreasing the momentum of each
particle in the direction of its motion.  Longitudinal
momentum is then restored by means of RF cavities.
Longitudinal cooling can be achieved by using a
dispersive element to correlate longitudinal momentum
and transverse position, then passing the beam through a
material whose thickness is dependent on transverse
position.  Multiple scattering and energy straggling are
competing processes which determine the lower limit on
the beam emittance.  Theoretical estimates of the cooling,
as well as a discussion of the effects of multiple scattering
and straggling can be found in papers by Skrinsky [1],
Vsevolozhskaya [2], and Neuffer [3,4].  The ionization
cooling concept has yet to be experimentally proven, but
a prototype experiment at FNAL has been proposed.

Extensive tracking studies have been conducted by other
authors [4]-[7], resulting in an initial design for the
cooling section.  Tools include the tracking code ICOOL
[7], the results of which have been used as a standard of
comparison for the code discussed in this paper.  In this
report we describe a  moment equation approach to
cooling section design, which is accurate for arbitrary
distribution function, and is much faster than tracking.

The main approximation of the theory is linearization of
the forces in the problem.

2. A CLOSED SET OF SECOND
ORDER MOMENT EQUATIONS

We consider first the case of a beam propagating
through a straight lattice containing cooling absorbers and
acceleration.  The transverse equations of motion for a
single particle in the cooling section can be written as:
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and similarly for Y, where X and Y are the transverse
coordinates and   

r
B is the focusing field. We neglect

transverse components of the accelerating electric field,
since the rf cavity for the cooling section will be a closed
pillbox, with no holes for the beam passage.  FX is the X
component of the force associated with multiple
scattering, and (dE/ds)Total is the energy change per unit
length in the direction of the particle’s motion, due to
passage through matter (note:  dE/ds<0). (dE/ds)Total can
be written as (dE/ds)avg + ∆ , where (dE/ds)avg is the mean
energy loss per unit length for a distribution of particles
with a given β, and ∆  is the energy straggling due to
statistics of the ionization process.  Below we drop the
subscript “avg”, so that “dE/ds” is the mean loss. We will
assume that vX

2+vY
2<<vZ

2.  We wish to take moments of
the single particle equations with the transverse
coordinates and momenta, and to arrive at a closed set of
equations.  In order to eliminate higher order moments
which would couple the 2nd order equations to those of
higher order, we linearize the forces on the right side of
the equations by expanding in the transverse coordinates.
Taylor expanding   

r
B about X=Y=0, so that BZ≈BZ0, BX

≈BX0+ C11X+C12Y, and BY ≈BY0+ C21X+C22Y, we obtain:
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The prime signifies d/dZ, β=v/c, and m0 is the rest mass.
Next we assume that βZ=βZ0+χ, where βZ0 is βZ for a
reference particle, and to maintain consistent ordering in
equations (2) and (3) we set βZ=βZ0 and γ=γ0.  For the
same reason (consistent ordering), we assume that dE/ds is
evaluated at the β of the reference particle in Eqs. (2)-(12).
The quantities we are interested in– e.g., for the
calculation of emittance– are coordinates and momenta
measured with respect to the beam centroid.  Therefore we
average equations (2) and (3) over the particle distribution
of all the particles in a beam slice located within Z
increment ∆Z, obtaining for the centroid motion:
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where M=m0c
2βZ0

2γ0.  These equations can now be
subtracted from equations (2) and (3), to give equations for
x and y, where x≡X- X , and y≡Y- Y .  Because the
equations are linear, the equations of motion for x and y
will be identical to equations (2) and (3), with x and y
everywhere replacing X and Y.  BX0 and BY0 = 0, since we
have assumed a straight lattice.  We now take moments of
the equations of motion with respect to x, y, x ′ , and y′ ,
to get:
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Here θ0 is the change in rms vx/vz due to multiple
scattering. These equations, with equations (4) and (5) and
an equation for pZ0′  (see below), give a complete closed
set of transverse moment equations for the case of a lattice
with no bends.

A computer code has been written to solve Eqs. (4)-
(12).    The Bethe-Bloch model is used for dE/ds, and the
Lynch-Dahl model [8] for multiple scattering.  We
assume all particles have the same γ.  dγ/dt is determined
by dE/ds and the accelerating fields.  In the future, energy
spread will be added, using Eqs. (14) and (15) below. This
type of code has the advantage over particle tracking that
it is much faster (~2 orders of magnitude), and therefore
useful for preliminary lattice design.  It is trivial to
include space charge in the model, should it become
important, in the approximation of linear space charge
forces. Results have been found to agree well in the
appropriate regime with results from the ICOOL tracking
code of R. C. Fernow.

We can obtain a linear single particle equation for the Z
direction in a similar fashion to what was done above for
the transverse plane by using the linearized magnetic field,
and linearizing the ionization energy loss and rf terms
about the position and momentum of the reference
particle.  This gives:
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Here δ= Z-Z0, where Z0 is the longitudinal position of the
reference particle, and Ez is the longitudinal component of
the accelerating field. Note that to this order, multiple
scattering does not appear in the longitudinal equation,
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and while pZ0 appears as a parameter in the transverse
equations, the longitudinal dynamics are not otherwise
coupled to the transverse.  We can thus average Eq. (13)
over all particles in the bunch, getting an equation for the
Z component of the bunch centroid.  Subtracting the
centroid equation from Eq. (13) and taking moments with
ξ≡δ- δ  , and ξ′ , we get equations for the z envelope and
velocity spread:
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where κ  ≡ 2βz0βz0′+βz0β0′+3βz0β0′γ0
2+βz0′/βz0.  The

averages of Eqs. (14) and (15) can be understood to be
averages over the whole bunch, or over a transverse slice
if the dynamics of a slice are to be followed.  

3. MOMENT EQUATIONS WITH BENDS

The single particle equations of motion for sections of
the lattice with dipole fields can easily be written down in
the usual fashion.  We neglect here Bz due to fringe fields,
and skew quadrupole components, and assume that γ is
constant within the dipole.  If we consider a bend in the
X-Z plane and linearize the magnetic field about the
reference orbit, we have the analog to Eq. (2):
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where ρ0=p0/(qBy0) is the reference orbit radius of
curvature, and the primes now signify derivatives with
respect to s, the distance along the reference orbit.  The
equation has been linearized, so corrections coming from
the difference between the particle’s radius of curvature and
momentum and that of the reference particle have been
dropped.  The Y equation is unchanged from the case
without bends, except that skew quadrupole and BZ0 terms
are neglected here, and we assume no material inside the
dipoles. To this order, the s equation of motion is ξ″=0,
i.e., there is no effect of the fields on the s motion.

It is now straightforward to derive moment equations,
as was done above for the case without bends.  First the
average of Eq. (16) is taken, to give the equation for the
centroid motion.  Then this is subtracted from Eq. (16) to
give an equation for x.  This equation will be of the same
form as Eq. (16), with X→x and δ→ξ.  Moments of the
three equations of motion with the coordinates and

momenta may then be taken, averaging over a slice of
beam within a length ∆s.  
  

4. SUMMARY AND CONCLUSIONS
We have derived second order moment equations

describing the beam in the cooling section of a muon
collider, including the effect of ionization energy loss in
materials and multiple scattering.  A code to compute the
evolution of the transverse moments along the accelerator
has been written and tested, and is now ready for use.
Results agree well with ICOOL runs in the appropriate
regime, and the code is extremely fast-- essentially
instantaneous. Apertures in X, Y, and Z will be added, to
simulate approximately the effects of dynamic apertures
and rf buckets of finite size. The formalism is very
general, and space charge can be easily included, in the
approximation of linear space charge forces.  The main
restriction of this theory is the approximation of linearity
of forces, both in transverse coordinates and in distance
and momentum difference from the reference particle.

5.  ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy, Office of Energy Research, Office of High Energy
and Nuclear Physics, under Contract No. DEA-AC03-
76SF0098 and Grant No. PDDEFG-03-95ER-40936. The
authors are grateful to Edward P. Lee for many useful
discussions, and to Richard C. Fernow for the use of the
code ICOOL, and much discussion concerning its use.

6.  REFERENCES

[1] A.N. Skrinsky,      Beam          Dynamics         and         Technology        Issues

   for        µ   +   µ      −              Colliders       , Proc. of the 9th Advanced ICFA Beam
Dynamics Workshop, Montauk, NY, p. 133 (1996).
[2]  Tatiana A. Vsevolozhskaya, ibid., p. 159.
[3]  David Neuffer, Particle Accelerators     14    , 75 (1983).
[4]  David Neuffer, A. Van Ginneken, NIM A     403    , 1 (1998).
 [5]  "Ionization cooling in the muon collider", Proc. of the
1997 DPF/DPB Summer Study "New Directions for HEP",
Snowmass, CO, June 25-July 12, 1996, Chapter 6 (BNL
Report # 52503).
[6]  "Transverse Emittance Cooling in the Muon Collider",
R.C. Fernow et. al., Submitted to the 1998 Advanced
Accelerator Conference, July 5-11, 1998, Baltimore, MD.
[7]  “Ionization Cooling Research and Development Program
for a High Luminosity Muon Collider”, FNAL Proposal P904,
April 1998.
[8]  G.R. Lynch and O.I. Dahl, Nucl. Inst. and Meth.      B58    , 6
(1991).

1060


