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1 INTRODUCTION radius of the orbit anN'T/, is the radiation energy loss per
] ] ] turn. At this point, we introduce the concept of the
The proposed lattice for a third generation synchrotrq@ference particle, for which energy loss due to

light source, ASTRIDII [1], is design to provide a lowsynchrotron radiation is exactly compensated by the
electron emittance of 5 nm at 1.4 GeV and 1 nm at O ergy gain:

GeV. In such low emittance SR sources a key concern is dW. -
. . . . 0 — H -

the decrease in life time due to enhanced scattering, the e =eUsing, -W,, =0, (2)
Touschek effect. In principle an improvement in the bearln it h ticle d t exist si th
life time can be obtained by increasing the emittancd €2y ~such a particle does not exist, since the
coupling [2] or by increasing the longitudinal bunchPerturbationy,,cosw,t has a coherent character. The
dimension, however, both methods affect the wholearticle with the minimum amplitude oscillation we shall
bunch and have an adverse effect on the light quality [3]call the quasi-synchronous particle and it's average phase,

To address these problems we have developed a metRgdhe reference phase.
of RF field phase modulation. The nature of this method For an explanation of the parametrization effect of the
is based on the parametrization of the radiation dampifgdiation damping we will make some simplifications.
decrement in the longitudinal plane. The RF phaderst, the damping time is expected to be much longer
modulation results in a particle redistribution in théhan the period of synchrotron oscillation. This means
longitudinal plane. It is leading to a lower density in théhat it does not affect the eigen frequency of the oscillator
bunch core and consequently a lower probability of thend we can first find the solution without damping and
intrabeam scattering. The equilibrium longitudinathen determine the damping by integration of the equation
emittance is determined by the balance of the quantunption. Secondly, since we are interested in the
excitation and the radiation damping processes. Wedistribution of density in the centre of the bunch we can
modify this balance for the growth of the phase aregonsider the problem in the linear approximation and then
occupied by the particles in the central part of th#@vestigate the contribution of non-linear terms.
longitudinal plane. We show that phase modulation with aThus, the equation for a particle oscillation in the linear
frequency three times that of the synchrotron oscillatioApproximation without damping can be written in the
excites the core growth with an increment greater than thm:
decrement of the radiation damping process. The model is d+ Q§¢ = -wmggei(wm”e), (3)
compared to measurements made at the ASTRIDI storage

/2
ring, which gave a factor of two increase in life time where Q. = %ZUGQ)r % is the synchrotron frequency
D,

2 PARAMETRIZATION OF RADIATION

DAMPING DECREMENT for the small amplitude oscillation. The solution of this

equation for the non-resonant cas®,(# Q) can be

For a beam particle in a circular accelerator, when tfiepresented through the sum of the homogeneous and
RF phase is modulated with an amplituge,and a inhomogeneous equation solutions:

frequency w,,, the equations of the motion are given by #(t) =¢,Uiei(95”¢‘) ry, 29592 ol(@nt+e) (4)
dw _ . ~ Wy 8
dt eu sm[¢ +Ym codwnt + 0)] ~W The first of the summands describes an incoherent motion
dp _ 1 awh : (1) and it is defined by the initial phage and the oscillation
ot o2 PR, W -w) amplitude of unperturbed motiony;. The second is

where U is the peak RF voltagey is the particle phase responsible for the coherent motion and describes the

angle relative to the RF field zero with fixed phaSeis mOT“k?;‘ Z;Z‘re bu d”;\t;a?ﬁ) ‘r’]"h:f'eé AR =W V. i
the initial phase of the phase modulatiom, is the oy P - 0

momentum compaction factap, is the revolution proportional toC;—¢ (see eq. 1) and it follows from
frequency, h is the harmonic number,p, is the t

_ i equation (4), that it is modulated
momentum of the reference particl®, is the average
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by the harmonic with frequencdw = Q —w,,: 02 w
= where)(:z—sz—mw—m, n:—&Da—B and n is
w:-Q%Z Qg Y B, OR
the dispersion function. Thus, the radiation losses are

2_020Q .
9 @n-0s 2 ¥ dulated by the h ic with the f
From this expression we can see that under fid@dthe modulate y the harmonic .W't t. € lrequency
w=w,—-Q and the amplitude is inversely

magnitude of the energy modulation is determined by thé _ _ _
ratio between the coherent RF phase modulatigioportional toy;. Now we can combine the equations

amplitude g, and the incoherent oscillation amplitude of(3), (7) and derive the second order equation for the phase
the particleyy; . Figure 1 shows the phase trajectories of @Scillation with the modulated radiation darznplng:
particle with the different oscillation amplitudes at thef * 28,{1+ x cod(wn - Q5 )t+0 -6, [} +Q%p = ®)

2
W-w, O Qe Q5 OnUn l-0)e0-0]7 5)

- - nQE codwpt +6)
4 s PJ, . L
ot where &, :2— is the decrement of the radiation
— o1 r pO

damping in the longitudinal plane without phase

modulation and J, = [2-(1-2n)r7] is the damping
0.80 partition function. Following the Bogoljubov and
Mitropolsky method [4] the solution of equation (8) can
be written in the form:

2

- Q
. ¢(t):wie EtCOE(QSt+¢i)+L[lm2—SZCOS(a)mt+9),
Wy — Q5
: N —— . : ()
Figure 1. The phase trajectories of a particle withnd the decrement is determined by the first harmonic
different amplitude of oscillation under the same RFeiQst

phase modulation amplitude.

of the expression between the curly brackets
multiplied by ¢(t) in equation (8):

same phase modulation, derived by integration of the 1 2n

original equation (1). With a change of the amplityde ¢ = ZEOEJ'[HXCOS(wm - )sin’(Q¢t +@)d(Qd),  (10)

the shape of the curves varies as well. 0 _

Now, knowing the energy deviation, let us define thehere © is the total phase of a particle. In order to get
radiation damping for the case of the RF phashie non-zero average action of parametrization to the
modulation. In the general case the radiation energy lossdiation damping we need to sef, =3Q. In this
for a revolution timeT of an electron, moving with the 5ge:

energyy =y, + Ay in the magnetic fieldB = B, + AB is

=en-X
determined by the well known formula: ¢ _EOEL 2 COSZ@E ' (11)
~ T Ay AB Taking into account the spontaneous character of electron
W, ‘J.F’o%“L Zy_+ZB_ t, (6) irradiation, the stationary distribution is determined by
0 © © the balance of the quantum excitation and the radiation

where P, = 8—ny282r2£ c is the radiation power loss of damping processes:
o] 3 o~o'e“0

\ 2
Ntot<£ ph>

— (12)
MOH—ACOSZ@B
o 2 t

the reference particle with an energy in the magnetic o=

field B,, r, =e?/4m,m.c? is the classical radius of an

electron. Substituting in expression (6) the meaning %here N is the total rate of the quantum emissi(éaf,h>

Ay AB . . .
7,— , then averaging over the closed orbit and using ihe mean square quantum energy. Since the pt@se
the expression (5), we can represent the radiation loss iB changed with twice the periodicity the sign of the
view: P ’ P &dditional term in the decrement modifies the distribution
' - in two directions, extending in one direction and
~ .\ P compressing in another perpendicular to the first (see
Wr =W + W, PR, aw tf2- 1-2ny1] , (7) figure 1). Making the correct adjustment of the phase of
i+ cos[(a) ~Q.)t+6-¢ ]} the phase modulation we can determine the extension in
X m s i the length of the bunch and the compression in the

momentum spread. The degree of this redistribution
depends on how the particle is far from centre of the
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bunch. Varying the RF phase modulation strength, we can w2
change the phase area, where the distribution is modifieds (t) = ¢y ——-— Cosw,t . Substituting in equation

The parametrization effect can be reached by the RF W =325
amplitude modulation as well and the nature is similar. (14) underw,, =kQ,, we get the non-linear equation for

a particle inside the bunch:
3 INFLUENCE OF NON-LINEAR RESONANCE ON 0 03 12 0
REDISTRIBUTION OF DENSITY ¢+Q§sin¢mﬁ m B—ZJZH m %osZstt+._.D: 0,(17)
BH?-1 -1 g

The linear approximation of the synchrotron motiofrrom this equation we can see that the particles in the
aIIOWS to f|nd the global affect on the redistribution due tgunch experience the parametric non_”near resonance and
the parametrization. However, the non-linear resonangge intensity of the resonance is mainly defined by the
can play the significant role in the changing of thmplitude of the coherent oscillation. In principle all

distribution directly [5] and through the parametrizatiomarmonics can excite the non-linear resonance, but the
of the decrement as well. From this point of view let us

k-1
see the non-linear effect on the parametrization of thetensity goes down ask_wl'—.The distribution for
radiation damping decrement. Really the eigen solution 2Hk-1)!

for the oscillator in the field of the sinusoid shape wavthe parametric resonance is defined by Hamiltonian [6]:

contains all odd harmonics[4]: 2 2
w_e, Hr(l,f))z%—l—+2\]ﬁk2ﬂ cosd. (18)
¢(t)=y, cosw - cosW . (13) 16 “H*-1H4

where W =Q.t+¢,;. It is easy to see after substituting4 EXPERIMENTAL RESULTS AND DISCUSSION
this solution in the integral (10), that we get the resonance
for all frequenciesw,, =2Q  +2k, where k=1,2,3,..., We have performed some crude experiments with RF
_ . . phase modulation to investigate this phenomenon. The
but not forw,, =2Q .. However, with the increase of the .. . - .

m s life time is increased up to three times at the frequency

resonance number the required RF modulation amplitqum =57kHz (k =3) and an amplitude of the modulation
has to be increased inversely proportionally to the~01;02 rad. The cain coefficient of the life time
coefficient of harmonic, what causes the harmful effectof ~~ " ' 9 . o
build up of coherent oscillations. Therefore th epends on the current. The maximum of the gain IS

reached at a current 120-150 mA and almost no gain

parametrization is most strong at the third harmonic. ; .
Now let us consider the redistribution due to the nof2€/oW 40 mA. We studied the modulation of the phase at

linear effect. Since we are interested in the redistributidff€ harmonic numberk =124 and found also a
of the density inside the bunch we should split thaignificant life time increase. Obviously the first
coherent component out and seek the solution for th@rmonic have to affect the redistribution, although the

phase @ relative to the centre of the bunch (the quasinfluence of the second and fourth ones is not in
accordance with our understanding. In the future we

synchronous phasg): intend to continue these investigations.
d%0 . The authors are very grateful to E.Uggerhoj and
42 +Qsinlp+9.(t)+ v, coswyt]- (14) D.Field for great interest in this work and helpful

sinfg . (t)+,, cosw, t] =0. discussions.
In turn, the quasi-synchronous phase shows, how the

Whole bunch oscillates relative to the modulated RF phase REFERENCES
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