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1 INTRODUCTION

   The proposed lattice for a third generation synchrotron
light source, ASTRIDII [1], is design to provide a low
electron emittance of 5 nm at 1.4 GeV and 1 nm at 0.6
GeV. In such low emittance SR sources a key concern is
the decrease in life time due to enhanced scattering, the
Touschek effect. In principle an improvement in the beam
life time can be obtained by increasing the emittance
coupling [2] or by increasing the longitudinal bunch
dimension, however, both methods affect the whole
bunch and have an adverse effect on the light quality [3].
   To address these problems we have developed a method
of RF field phase modulation. The nature of this method
is based on the parametrization of the radiation damping
decrement in the longitudinal plane. The RF phase
modulation results in a particle redistribution in the
longitudinal plane. It is leading to a lower density in the
bunch core and consequently a lower probability of the
intrabeam scattering. The equilibrium longitudinal
emittance is determined by the balance of the quantum
excitation and the radiation damping processes. We
modify this balance for the growth of the phase area,
occupied by the particles in the central part of the
longitudinal plane. We show that phase modulation with a
frequency three times that of the synchrotron oscillation
excites the core growth with an increment greater than the
decrement of the radiation damping process. The model is
compared to measurements made at the ASTRIDI storage
ring, which gave a factor of two increase in life time.

2 PARAMETRIZATION OF RADIATION
DAMPING DECREMENT

   For a beam particle in a circular accelerator, when the
RF phase is modulated with an amplitude mψ and a

frequency  mω , the equations of  the motion are given by
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where U is the peak RF voltage, ϕ  is the particle phase

angle relative to the RF field zero with fixed phase, θ  is
the initial phase of the phase modulation, α  is the
momentum   compaction    factor, rω     is   the revolution

frequency, h  is the harmonic number, op  is the

momentum of the reference particle, oR is the average

radius of the orbit and rW
~

is the radiation energy loss per

turn. At this point, we introduce the concept of the
reference particle, for which energy loss due to
synchrotron radiation is exactly compensated by the
energy gain:
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In reality  such a particle does not exist, since the
perturbation tmm ωψ cos  has a coherent character. The

particle with the minimum amplitude oscillation we shall
call the quasi-synchronous particle and it’s average phase,
as the reference phase.
    For an explanation of the parametrization effect of the
radiation damping  we will make some simplifications.
First,  the damping time is expected to be much longer
than the period of synchrotron oscillation.  This means
that it does not affect the eigen frequency of the oscillator
and we can first find the solution without damping and
then determine the damping by integration of the equation
motion. Secondly, since we are interested in the
redistribution of density in the centre of the bunch we can
consider the problem in the linear approximation and then
investigate the contribution of non-linear terms.
   Thus, the equation for a particle oscillation in the linear
approximation without damping can be written in the
form:
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for the small amplitude oscillation. The solution of this
equation for the non-resonant case ( sm Ω≠ω ) can be

represented through the sum of the homogeneous and
inhomogeneous equation solutions:
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The first of the summands describes an incoherent motion
and it is defined by the initial phase iϕ  and the oscillation

amplitude of unperturbed motion iψ . The second is

responsible for the coherent motion and describes the
motion of the bunch as whole.
    The energy deviation of a particle oWWW −=∆  is

proportional to 
dt

dϕ
 (see eq. 1) and it follows from

equation (4), that it is modulated
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by the harmonic with frequency ms ωδω −Ω= :
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From this expression we can see that under fixed δω  the
magnitude of the energy modulation is determined by the
ratio between the coherent RF phase modulation
amplitude mψ and the incoherent oscillation amplitude of

the particle iψ . Figure 1 shows the phase trajectories of  a

particle with  the different oscillation  amplitudes   at   the

 Figure 1.  The phase trajectories of a particle with
different amplitude of oscillation under the same RF
phase modulation amplitude.

same  phase  modulation, derived by integration of the
original equation (1). With a change of the amplitude iψ
the shape of the curves varies  as well.
   Now, knowing the energy deviation, let us define the
radiation damping for the case of the RF phase
modulation. In the general case the radiation energy loss
for a revolution time T  of an electron, moving with the
energy γγγ ∆+= o in the magnetic field BBB o ∆+=  is

determined by the well known formula:
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where crBP eooo 0
222

3

8 εγπ=  is the radiation power loss of

the reference particle with an energy oγ  in the magnetic

field oB , 2
0

2 4/ cmer oe πε=  is the classical radius of an

electron. Substituting in expression (6) the meaning of

B

B∆∆
,

γ
γ

 ,  then averaging over the closed orbit and using

the expression (5), we can represent the radiation loss by
view:
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the dispersion function. Thus, the  radiation losses are
modulated by the harmonic with the frequency

sm Ω−= ωδω  and the amplitude is inversely

proportional to iψ . Now we can combine the equations

(3), (7) and derive the second order equation for the phase
oscillation with the modulated radiation damping:
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=  is the decrement of the radiation

damping in the longitudinal plane without phase

modulation and [ ] 2n)-(1-2 η=zJ is the damping

partition function. Following the Bogoljubov and
Mitropolsky method [4] the solution of equation (8) can
be written in the form:
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and  the decrement is determined by the first harmonic

ti se Ω of the expression between the curly brackets
multiplied by ( )tϕ&  in equation (8):
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where Θ  is the total phase of a particle. In order to get
the non-zero average action of parametrization to the
radiation damping  we need to set sm Ω= 3ω . In this

case:
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Taking into account the spontaneous character of electron
irradiation,  the stationary distribution is determined by
the balance of the quantum excitation and the radiation
damping processes:
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where N& is the total rate of the quantum emission, 2
phε

is the mean square quantum energy. Since the phase Θ2
is changed with twice the periodicity the sign of the
additional term in the decrement  modifies the distribution
in two directions, extending in one direction and
compressing in another perpendicular to the first (see
figure 1). Making the correct adjustment of the phase of
the phase modulation we can determine the extension in
the length of the bunch and the compression in the
momentum spread. The degree of this redistribution
depends on how the particle is far from centre of the
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bunch. Varying the RF phase modulation strength, we can
change the phase area, where the distribution is modified.
   The parametrization effect can be reached by the RF
amplitude modulation as well and the nature is similar.

3 INFLUENCE OF NON-LINEAR RESONANCE ON
REDISTRIBUTION OF DENSITY

   The linear approximation of  the synchrotron motion
allows to find the global affect on the redistribution due to
the parametrization. However, the non-linear resonance
can play the significant role in the changing of the
distribution directly [5] and through the parametrization
of the decrement as well. From this point of view let us
see the non-linear effect on the parametrization of the
radiation damping decrement. Really the eigen solution
for the oscillator in the field of the sinusoid shape wave
contains all odd harmonics[4]:
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where ist ϕ+Ω=Ψ . It is easy to see after substituting

this solution in the integral (10), that we get the resonance
for all frequencies ksm 22 +Ω=ω , where k=1,2,3,…,

but not for sm Ω= 2ω .  However, with the increase of the

resonance number the required RF modulation amplitude
has to be increased inversely proportionally to the
coefficient of harmonic, what causes the harmful effect of
build up of coherent oscillations. Therefore the
parametrization  is most strong at the third harmonic.
   Now let us consider the redistribution due to the non-
linear effect. Since we are interested in the redistribution
of the density inside the bunch we should split the
coherent component out and seek the solution for the
phase φ  relative to the centre of the bunch (the quasi-

synchronous phase sϕ ):
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In turn, the quasi-synchronous phase shows, how the
whole bunch oscillates relative to the modulated RF phase
with tmmss ωψϕϕ cos~ += and:
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This is the equation for the bunch oscillation with an
external resonance. The resonance Hamiltonian in the
above case, after the canonical transformation to the
action-angle variables ϑ,I  has the form [6]:

( ) ϑψ
ω

ϑ cos
216

,
2

22 II
IIH m

s

m
r

Ω
+−∆⋅= ,            (16)

where sΩ=∆ /δω . In the simplest case, when 1>∆ and

1 m <<ψ ,  the oscillation of the bunch is described by
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(14) under sm kΩ=ω , we get the non-linear equation for

a particle inside the bunch:
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From this equation we can see that  the particles in the
bunch experience the parametric non-linear resonance and
the intensity of the resonance is mainly defined by the
amplitude of the coherent oscillation. In principle all
harmonics can excite the non-linear resonance, but the

intensity goes down as ( )! 12 1

1
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.The distribution for

the parametric resonance is defined by Hamiltonian [6]:
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4 EXPERIMENTAL RESULTS AND DISCUSSION

   We have performed some crude experiments with RF
phase modulation to investigate this phenomenon. The
life time is increased up to three times at the frequency

57=mω kHz ( )3=k  and an amplitude  of  the modulation

2.01.0 ÷≈  rad. The gain coefficient of the life time
depends on the current. The maximum of the gain is
reached at a current 120-150 mA and almost no gain
below 40 mA. We studied the modulation of the phase at
the harmonic number 4,2,1=k   and found also a
significant life time increase. Obviously the first
harmonic have to affect the redistribution, although the
influence of the second and fourth ones is not in
accordance with our understanding. In the future we
intend to continue these investigations.
      The authors are very grateful to E.Uggerhoj and
D.Field  for great interest in this work and helpful
discussions.
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