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Abstract
Space-charge interactions in high-intensity linear
accelerator can lead to equipartitioning of energy between
the longitudinal and the radial degrees of freedom. This can
be a source of emittance growth and halo formation.
Equipartitioning phenomena is analyzed. The excited
coupling-resonances are described as a function of both
beam and accelerator parameters.

1  INTRODUCTION
P. Lapostolle first discussed 30 years ago the question of
emittance exchange between the radial and longitudinal
degrees of freedom in high-intensity proton linacs [1].
After a straightforward analogy with heat exchanges, he
immediately pointed out that ″this has no physical sense″.
Actually, the fact that the mean time between collisions is
much longer than the time spent by particles in a typical
linac excludes a direct interpretation in terms of statistical
mechanics. Nevertheless, M. Promé [2] did numerical
simulations showing emittance exchange and an
evolution towards an equipartitioning (EQP) of the radial
(x) and longitudinal (y) mean kinetic energies:

<vx

2> = <vy

2> (1)

The fact that this equilibrium was reached more rapidly
as the beam current increased has been interpreted as a
direct effect of the nonlinear space charge forces. But,
this could well be due to mismatch increasing with the
beam current! R.A. Jameson [3] confirmed these results
and pointed out that for a matched beam, eq.(1) leads to :

εx / εy  =  σy / σx  =  a / b (2)

where εx and εy are the rms emittances, σx and σy are the
phase advances with space charge, a and b the rms bunch
radii in the transverse and longitudinal degrees of
freedom respectively. Jameson also did a simulation
showing that no emittance exchange occurs when a linac
is designed using the EQP rule (eq. 2). However, this was
unfortunately done for a very special case where the ratio
of eqn. 2 equals to 1, i.e., a round beam (a = b) where the
space charge forces cannot induce (x-y) coupling !

The ″physical sense″ of equipartition for practically
collisionless beams has not been thoroughly analyzed
since then. Equipartition, however, has sometimes been
emphasized to the level of a basic rule to avoid not only
emittance exchanges but also emittance growth and halo
formation. Assertions aside, several important questions
can be raised about the EQP rule (2) :

- It is based on molecular chaos or ergodic hypothesis at
the microscopic level. Is it justified in our collisionless N-
particle systems ? If yes, for which beam and accelerator
parameters ?

- It refers to transverse and longitudinal rms values, as if
the system could be reduced to a pair of coupled
oscillators. What is the link with the classical EQP theory
[4] which applies to the eigen modes of oscillation (if
they are well separated) and not to individual oscillators ?

- We know that the space charge forces cannot induce
any coupling for a round beam considered in Ref 3. How
the space charge forces can then be responsible for EQP ?

- How is it that several high current linacs designed with
apparent violation of the EQP rule show absolutely no
sign of evolution towards an equipartitioned equilibrium?

- Its application can lead to strong tune depressions which
is well known to have catastrophic consequences on the
beam dynamics. What is preferable, an equipartition with
severe tune depression or non-severe tune depression
without equipartition ?

Answers to these questions are not straightforward and
need careful work. In the following sections, we present
some ideas and topics which appear relevant and could
serve as the starting point for work in this direction.
Section 2 discusses basic physics linked to equipartition
while section 3 deals on the classical problem of modern
physics, the FPU problem, which is the paradigm for
EQP. In section 4, we present studies on the coupling
resonances and new results.

2  EQUIPARTITION
The theorem of energy-equipartition [5] is easily
understood for a thermodynamical system where each
degree of freedom exchanges its excess energy through
multiple collisions. The relaxation time to reach the
"equipartitioned" equilibrium state is directly determined
by the collision rate between the large-N molecules
enclosed in a finite volume.

Equipartition in generic Hamiltonian systems is much
more complicated and still a subject of intensive research
in several fields of Physics. The energy-equipartition is
generally based on the assumption that the system is
ergodic. In this case, trajectories in the system must cover
all parts of phase space, and be able to pass arbitrarily
close to any point in the phase space infinite number of
times. Thus, a system with invariant KAM curves is not
ergodic since a part of the system is confined to a
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localized phase space region. Nevertheless, if the
dynamics is chaotic in some subspaces of the phase
space, the system can be considered as ergodic in these
subspaces [6]. In this case, the system contains a mixture
of quasiperiodic (KAM) and chaotic trajectories, and a
mixture of stable and unstable periodic orbits (fixed
points). It is this regime of weak chaos which is more
difficult to analyze than the one of strong chaos for which
the fast mixing property induces an ergodic behavior with
energy equipartition.

For proton beam currents up to 100 mA or more, the tune
depressions η = σ/σo is usually greater than 0.2 and
fortunately most of the particle trajectories are stable (σ
and σo are the phase advances with and without space
charge respectively). The ergodic hypothesis is verified
only in some narrow chaotic regions of phase space (see
[7] and references therein). The system of particles under
such conditions is in a state of weak chaos with weak
mixing properties.

3  THE FPU PROBLEM
For a system of N- coupled oscillators, the equipartition
theorem states that every frequency would on the
average, have the same energy, if averaged over a
sufficiently long time. The determination of this
relaxation time as a function of the system parameters
i.e., number of oscillators, mean-energy per oscillator,
frequency of the initial excitation, has been the subject of
studies since the very beginnings of statistical mechanics.

The Fermi-Pasta-Ulam problem addresses the question of
energy-equipartition in a chain of coupled oscillators with
nonlinear coupling. To understand the ‘asymptotic’ or
large-time scale behavior of a nonlinear system, they did
numerical experiment with a chain of 64 particles [8].
The result was contrary to the expectation: The energy
given to one of the normal modes was exchanged in a
complicated but recurrent way among all other modes but
no equipartition of energy was observed. This famous
numerical experiment done using one the first computers
available after the second world war was then called the
"FPU problem" since the expected "thermalization" did
not occur.

Subsequent extensive numerical simulations with the
advent of powerful computers confirmed the existence of
an energy threshold above which the motion becomes
fully chaotic and quick mixing takes place i.e., in the
physical sense, the large N-system like the FPU lattice
can be considered ergodic (see [9], [6] and references
therein). Above this energy threshold known as strong
stochastic threshold (SST), the property that sharply
changes is the mixing rate which in turn is directly related
to the strength of chaoticity (weak or strong) of the
system. An unambiguous definition of the SST is given
by the crossover value εc (ε is the energy per degree of
freedom) of the largest Lyapunov exponent [6]. The SST
provides interesting insight into the energy dependence of

the relaxation time needed to reach the equilibrium
(equipartition) from an initial state in a large N-body
nonlinear Hamiltonian system.

Fig.1 [9] shows, as an example, the ε-dependence of the
relaxation time τR and the maximum Lyapunov exponent
λ1 (full circles) for a FPU model with N=128 where four
lowest modes are initially excited. Dashed lines represent
power laws ε2 and ε2/3. Open circles and squares represent
relaxation times to equipartition of energy among normal
modes of the energy initially given to the four lowest
modes of the chain. The crossover point of λ1 clearly
defines the strong stochastic threshold. At high energy
(the domain of strong chaos) τR is almost independent of
the energy. At low energy (weak chaos regime) τR

strongly increases as the energy decreases. It should be
noted here that SST is an intrinsic character independent
of the initial condition of the system.

Fig. 1 :  Largest Lyapunov exponent and relaxation time
in the FPU problem  ([9], see also the text above and [6])

A system of N-bunched particles constrained by external
and space-charge forces can be viewed as a system of N-
coupled oscillators. It seems that the techniques used for
the FPU problem could be fruitfully used to study the
relaxation time towards an equipartitioned equilibrium in
such systems. As already mentioned, proton beams with
currents up to 100 mA or more usually lead to a dynamics
with weak chaos and weak mixing. Thus, the working
point is probably below the Strong Stochastic Threshold!
This remains to be verified. An analysis with different
parameters to find the sensitivity of the SST to parameters
will also be very useful.

4  COUPLING RESONANCES
The emittance transfer mechanism induced by coupling
resonances is well known in circular accelerators.
I. Hofmann has studied this source of ″collective
instabilities″ induced by space charge. He has drawn
charts and identified the instability thresholds (SST ?) for
the main modes by solving the Vlasov's equation [10]
[12]. Hofmann’s multiparticle simulations as well as
others done by Jameson [11] clearly demonstrated the
utility of these charts with respect to phase space dilution.
Starting from the equations used in [12], we will show
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that unstable areas correspond to locations in Hofmann’s
chart where the coupling resonances can be excited.

The dynamics of a matched beam with radial symmetry
and under smooth approximation can be defined by three
beam parameters (εx, εy and intensity) and two parameters
related to the external focusing forces (σox and σoy). It can
be easily shown that after a normalization, the beam
dynamics can be studied without any loss of generality
using only 3 of the 5 following parameters :

ηy = σy/σoy    α = σx/σy    εx / εy    ηx = σx/σox    a / b

This is illustrated in Fig.2 which shows the curves for
ηx = constant as a function of ηy and α with εx/εy = 5.

Fig 2: Curves of ηx = constant vs α and ηy with εx/εy = 5.

For a given point (α, ηy) and εx/εy, the 4 tunes σx

(normalized to 1), σox , σy and σoy are then known. The area
occupied by the beam with space charge in the tune
diagram (Fig.3) for each (α, ηy) is then defined.

Fig. 3 :  Tune diagram for α = 1.5, ηy = 0.5, εx/εy = 5.
The small red area represents the beam core.

It is easy to determine if a coupling resonance is present
for the beam area from Fig.4 which is a chart for the
parameters (α, ηy) with εx/εy = 5. This chart is very similar
to the one calculated by I. Hofmann.

Fig. 4 :  Chart giving the areas where the coupling
resonances 1/3, 1/2, 1/1, 2/1 and 3/1 can be excited

5  COMMENTS
It must be noted that the underlying physics of analysis in
terms of coupling resonances is close to the one used in
the "FPU problem". The concepts of resonance,
resonance overlap leading to weak or strong chaos
depending on the excitation energy are good candidates
to explain why and when EQP may occur. It should also
be pointed out that these concepts are far from those
leading to the EQP rule (Eq.2), although the two
approaches get mixed in some publications. Furthermore,
a working point which satisfy the EQP rule can very well
be below the stability threshold in the Hofmann's chart !
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