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Abstract In the following sections we will investigate the non-

- ' linear tune shift and the resonance structure of a slightly
The cylindrical transverse charge profile of the electro fined model to the hard edge electron beam by smooth-

_beam inan elect_ro_n coole_r causes a linear tune shift of ﬂi}‘?g the edges.
ion beam when it is fully immersed in the electron beam.

Near the edge of the electron beam, however, the electrj
field is highly non-linear and will perturb the motion of the 5 CHARGE DISTRIBUTION AND FIELD

ion beam. This regime is of interest for accelerators thathe radial distribution of the electrons is parametrized by
use electron cooling to improve accumulation, especially

after injection when the ions’ beam size is larger than that G(r) = erfe <7“ - b)
of the electrons. In this report we analyze the magnitude of a

this effect and calculate the resonance driving terms of theh b determines the size of the electron b o
electric field created by a cylindrical electron beam. whereb determines the size of the electron beamapao-

vides a cutoff parameter to smooth the edge. It determines
the width over which the electron distribution decays to
1 INTRODUCTION zero. Using Gauss' La@rRE(R) = fOR 27rip(r)dr the

o ) electric field arising from this charge distribution is calcu-
The radial distribution of the electron beam in an electro&ted in ref. 2 with the result

cooler is almost constant over the cross section of the elec-

tron beam and almost zero outside. The resulting electricR E(R) = a? (F(z1) — F(22)) + ab (G(z1) — G(22))
field rises linearly inside the electron beam and drop like (3)
1/r outside, resulting in a sharp edge at the border of thgith F(z) = fz"o terfc(t)dt = (1/4 - 22/2) erfc(z) +
electron beam. The interaction of the ion beam with the efz2/2ﬁ andG(z) = [Zerfe(t)dt = eff/\/— _
electric field of the electron beam is conceptually similar tg erfe(z) andz; = —b/a andzzg = (R — b)/a. The distri-

()

a strong-weak beam-beam effect in a collider. In the ele‘B'utiom/;(r) and electric fieldz(r) for b = 1 anda = 0.1
tron cooler the sharp edge of the electric field may drivg,e shown in Fig. 1. On the same graph the distribution

high order resonances more strongly than the rather smoQffiy electric field of a gaussian with the same slope at the
beam-beam kicks from round gaussian beams. In ref. 1 it

is suggested that these resonances are responsible for the
observed “electron heating” in CELSIUS and we try to add
a facet to its interpretation.

If we assume a constant transverse charge density we can
calculate the linear tune shift the ion beam experiences to
be 1.6
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wherer, is the classical proton radius, is the beta func-

tion at the location of the cooldrijts length,b the radius of

the electron beanT, the electron current3 and~ are the

normalized speed and energy of the ion beam. In CELSIUS

[1], for protons at injection energy of 48 MeV we calculate

Av, = 0.0381./A. 08r
Moreover, the electron beam attracts the positively -2l = = — Y

charged ion beam towards its center and thus provides a '

focussing force which will increase the tune in the center

of the ion distribution, provided good alignment betweefrigure 1: Radial charge distribution and associated field

electron and ion beam. lons in the tail will experience &r gaussian (dotted lines) and erfc-distribution (solid

smaller tune shift and will thus have lower tune values. lines).
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the integral numerically. Inserting the erfc-distribution’s
electric field we generate the data shown in Fig. 2 where
: : we plot Av(J)/¢ as a function of/2.J for a = 0.1 and
1.0 g 27001 1 0.01 and for the gaussian beam-beam kick. We clearly see
that the tune shift for the erfc-distribution stays constant
up to the electron beam’s radius @®.J = 1. The only
difference lies in the sharper roll-over to the inverse decay
outside the beam.

In order to calculate the tune footprint of the erfc dis-
tribution we write down the equations of motion for the
coupled system i andy

0.8
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gaussian
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gz T Vale = —4mgS(r)-=0,(6) (6)
%0 10 20 N 30 40 50 with r? = 2.J, cos? ¢, + 2.J, cos® ¢, andn,n’, ¢, and.J
e now carry subscripts or y. After some algebra we obtain

Figure 2:Non-linear tune shift as a function of the ampli- do , . S(r)
tude of the oscillation/2.J. The curve from the gaussian is g = Vo T Am€cos” do——0(0) (7
shown solid, the one far = 0.1 dashed, and foa = 0.01 o ) ] )
dotted. and a similar equation for the vertical coordinate. We now

keep only the constant part of the delta-function, average

o _ over phases, and¢,, and reach
origin are shown for comparison. We clearly observe that
2m
dos

both distributions have the same slope at the origin and that Tdpy,

the field from the erfc-distribution has enhanced inflection 2V=(Jz, Jy) = 25/0 o /0 2 0
points near the edge of the distribution. For large radii 5 5

both fields decay ak/r. It is also noteworthy that the total X S(v/2J cos? s + 205 cos® §)
charge in the beam for a gaussian and an erfc-distribution V/2J; cos? ¢y + 2.J, cos? ¢,

with smalla are equal, provided the associated tune shi nd a similar equation for andy exchanged. The double
are equal. Another fact is that the rms of the gaussian wiﬁ '

. o tegral can be easily integrated numerically and we can
t_he same tune Sh'ft as the erfc—gj|st-r|bu.t|on IS abbut/i plot the tune shiftéAv,, and Ay, for different action vari-
times the beam sizeof the erfc-distribution. ablesJ, and.J,, as shown in Fig. 3.

The left figure shows the tune footprint for a round gaus-
3 TUNE SHIFT AND FOOTPRINT sian beam and the right figure that of an erfc-distribution.

In order to calculate the non-linear tune shift we mimic thg._he rms bea'".” size of the gaussian porrespond#téi
calculations in ref. 3. We start with the differential equa—tlmes the ra_d|u§) of the e_rfc-d|str|but|on, such as t_hose
gwown in Fig. 1. The lines correspond to amplitudes

tion for the transverse betatron motion with a single locate _ )
non-linear forceS(n) with unit slope at the origin V2Jay =1,2,3, 4.X b. Comparing the footprints yve learn
that for small amplitudeg/2.J,,, < b the tune shift stays
d?n ) close to the top right corner which corresponds to the full
a2 TV = —4mv€S(n)op(0) - (4) " linear tune shift. Another important observation is that the

Here we parametrized the strength of the perturbation in

terms of the linear tune shift at the origin,d is the az- RN R R AR s I e s AR RSP
imuthal variable and runs from zero2a. Asindependent & m——
variables we have chosen those of normalized phase space |
n, " which are related to those of phase space’ and of w 1 eF .
action angle variableg ¢ by x = /B,n = \/2JB, cos(¢)  * | EEn S ]
andn’ = —vv2Jsin(¢). For the tune shift we get after g
some manipulations s 1 e 7

0 | | I I 0 | | I I

2 27T d ° o OAAV/{ o o ' ° o OAAV/{ o o
Av(J) = 3 —j: cos pS(vV2Jcosp). (5) " "

vaJ Jo 2 Figure 3: Tune footprint of a round gaussian beam with
As a check we calculate the tune shift for a constant line& = b/ V2 (left) and abeam with erfc-distribution with=
force S() = 1. Itis easy to see that in this case the tund-1 (right). The lines correspond to particle amplitudes of
shiftis given by¢. For a general kick it is easiest to evaluateV 2Jypy =1,2,3,4xb.
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tune footprint of the erfc-distribution is wider than of the
gaussian, which means that it is more likely to hit reso-
nances. The driving terms of these resonances will be ad- oo

dressed |n the neXt SeC'[IOH solid: gaussian

dots: erfc with a=0.1

4 RESONANCES

The resonance driving terms can be evaluated by following
ref. 3 again. To this end we replace the periodic delta func-

tion by its Fourier expansiof, () = 5= > > e~ im0,

2 m=—o00

FordJ/df andd¢/dé we obtain the expressions

log10(A_p)

dJ . G —im@

- = 26V/2J sin ¢ S(V/2J cos ¢) m;oo e 9)
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Figure 4: The resonance width fg5r = 4, ..., 20 for the
We now consider the equation ferand express the electric gaussian (solid) and the erfc-distribution (dots) superim-
cooler profile functionS(+/2J cos ¢) as a Fourier series  posed for comparison.

V2JcospS(vV2Jcosp) = J Z A, cosng (10) alarge number of islands can form. Increasing the electron
n=0 currentl, will cause the islands to grow and since there is

. : - a multitude of islands, some will merge, causing chaotic
where the (action/—dependent) Fourier coefficients, dynamics (Chirikov’s criterion) and particles will have a

can be easily calculated numerically by Fast Fourier Trans- h to diff I litud h I
form methods. The factaf is retained on the right hand path to diffuse to larger amplitudes. It can, however, also

side to make later formulae easier to write. Note that Onlcause particles which are damped by the electron cooler to

cosine terms appear in that Fourier series, because ErgF trapped in th_e islands, t_hus impeding the particle’s pe_lth

power series ofos ¢ can be expressed in terrﬁs«mfs n atoysmal_ler amplitudes. Thls_phenomen_on would rev_eal it-

only. After some algebra we obtain an equation for thé res§_elf as increased damping time. As a final observation we
' ; report that the resonance strengths scale smoothly with the

onant phase = p¢ — qf which reads cutoff parameted.

% ~ (pv —q) + p§Ao + p€Apcospx . (11) 5 CONCLUSIONS

We recover the non-linear tune shift terdy which de- We calculated the non-linear tune shift, tune footprint, and

pends on the action variable We also see that the “in- resonance driving terms for an electric field distribution

stantaneous tunels/df varies slowly in the vicinity of a generated by a radial electron distribution given by eq. 2

resonance/q with amplitude given by A, which coin- and compared with a gaussian distribution. We found that

cides with the definition of the resonance width in ref. 3. the resonances are driven stronger near the edge of the dis-
Turning back to the erfc-distribution we use the kicktribution as documented in Fig. 4.

function S(n) and calculate the resonance widths doe In order to understand “electron heating” better we have

0.1. The resulting tune shift and resonance widths ar® extend the analysis to coupling resonances, which are

shown in Fig. 4 in units of the linear tune shift parameteexcited due to the presence of the cooler’s solenoid. An-

¢, both for a gaussian and an erfc distribution. We see thather field of interest is to calculate the width of the islands

there are no resonances excited within the electron bea&@nd determine “capture rates” for particles being trapped in

(vV2J < b = 1), but as soon as the ions oscillate withthose islands.

amplitudes close to the electron beam radius they feel a

strong non-linearity which causes the resonance strengths 6 REFERENCES
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