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Abstract

Fabricational techniques for very high frequency structures
require planar geometries. Typical devices are ladder or
muffin-tin structures which are both essentially rectangu-
lar. Although a specific geometry has to be calculated
numerically, it is often convenient to use approximations
or to have a very fast code for an interactive approach.
We present a field-matching code for rectangular periodic
structures which computes the basic RF parameters, such
as frequency, R upon Q (longitudinal and transverse), Q-
value, attenuation, Brillouin-diagram and field pattern in a
fast way. We also give analytical dependencies of the lon-
gitudinal and transverse voltage gain and some approxima-
tions of RF parameters.

1 INTRODUCTION

Recently, planar structures have been considered for par-
ticle acceleration at very high frequencies, around 100
GHz [1], [2].It was proposed to fabricate the structures
either by means of deep x–ray lithography (LIGA) or by
wire electro–discharge–machining (EDM). In both cases
the structures are basically muffin–tin structures with rect-
angular cross–sections. Their RF–parameters have to be
calculated numerically with codes like GdfidL [5], for in-
stance. The standard structure can also be calculated with
a mode–matching technique [3], [4]. But often a very
fast code or only approximate solutions are convenient.
Therefore we have developed a mode–matching code for
a simplified geometry which is purely two–dimensional,
Fig 1. The code allows for the 2.5–dimensional compu-
tation of fields with plots and the main RF–parameters like
frequency, Q–value and longitudinal and transverse shunt
impedance, all for a given phase advance per cell. Addi-
tionally, approximate analytical expressions have been de-
rived for the structure frequency and the longitudinal and
transverse voltage gains of a probing particle.

2 MODE–MATCHING SOLUTION FOR
A 2–D RECTANGULAR STRUCTURE

Let us take a purely rectangular structure, Fig.1, which is
for many purposes a good approximation of a muffin–tin
structure.

The mode–matching solution for such a structure is
straight forward and will be given here only in short. We
separate the volume into two regions, the beam region 1

and the cavity region 2. In the beam region we use space–
harmonics
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2–dimensional, it is sufficient to consider modes with an
Hx–component only and noEx–component. Then the cor-
respondingE– andH–components can be calculated from
equs. (1) and (2)

E = r� (A ex) =
@A

@z
ey �

@A

@y
ez (3)

�j!�H = �
�
k2
x
� k20

�
A ex +

@2A

@x@y
ey +

@2A

@x@z
ez :

At the interface between 1 and 2, aty = �a, the tangen-
tial field components have to be matched. That means, we
determine the Fourier coefficientsAn such thatE(1)

z equals
E

(2)
z in the cavity gaps,nL � z � nL+g,�1 < n <1,

and is zero on the irises,�t + nL � z � nL. For the
match of theHx–component we determine the coefficients
Bn such thatH(2)

x equalsH(1)
x in the cavity gap only. Sub-

stituting one set of equations into the other, leads to an in-
finitely large set of homogeneous linear equations. Forn

large enough, the system converges and can be approxi-
mated by a finite system. Its eigenvalues~�0i and eigen-
vectors~Ai are approximations of the propagation constant

Figure 1: Longitudinal and transverse cross–sections of a
rectangular structure.
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�0i and the expansion coefficientsAni, respectively, of
modei. Thus the fields are fully determined and the basic
RF–parameters, like shunt impedance,Q–value, attenua-
tion constant, group velocity etc., are easily calculated. We
have written a simple and fast computer code, called PST,
which calculates the RF–parameters and plots the contour
lines of constantHx (which equal the lines of force in case
of M = 0) for a given phase advance per cell and a given
geometry. As an example the Figures 2 and 3 show the dis-
persion relations and the field plots of the first accelerating
and deflecting modes of a 120 GHz,2�=3–mode structure.
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Figure 2: Dispersion diagram of the first a) accelerating and
b) deflecting mode of a 120 GHz,2�=3–mode structure.

a) b)

Figure 3: LinesHx = const. of the first a) accelerating and
b) deflecting mode of a 120 GHz,2�=3–mode structure
(vph = c0).

3 ANALYTICAL EXPRESSIONS FOR
LONGITUDINAL AND TRANSVERSE

VOLTAGE GAINS

If the fields are dependent on the transverse coordinatex

or if the probing particle has a velocity smaller than the
velocity of light, the voltage gain experienced by the parti-
cle depends on the transverse position of the trajectory. A
good approximation of this dependence for a typical accel-
erating mode can be derived by assuming a single mode in
the cavity region

A(2) = B0 cosh�0(y � b) cos kxx ; �20 = k2x � k20 : (4)

In average, the particle interacts only with the synchronous
space–harmonic, which we assume to be the fundamental
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. From equ.(5) together with (6) follows the longi-
tudinal voltage gain per structure length as
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.
Several factors enter into equ.(7). Apart from the con-

stante j�B0�0, there is the ratio of gap to period length,
the assumedx–dependence, a transit time factorT which
takes the finite traveling time across the gap into account,
and finally a factorR which is due to the exponential decay
of the field across the aperture.

In a similar way we obtain the transverse voltage gains
as
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4 APPROXIMATION FOR STRUCTURE
FREQUENCY AND R UPONQ

Often it is convenient to get a fast estimate of the struc-
ture frequency or of the geometrical parameters for a given
frequency.

A 0–order approximation takes into account only the
fundamental space–harmonic in the beam region, equ.(1),
and thez–independent mode in the cavity region, equ.(2).
Then we have different options to set up an eigenvalue
equation. The first and commonly used way is to equate
the transverse wave impedances at the interfacey = a

E(1)
z =H(1)

x = E(2)
z =H(2)

x : (9)

Using equs.(1) and (2) in (3) and substituting into (9) yields
finally an equation equal to the eigenvalue equation of a
dielectric slab
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Equ.(10) can be solved numerically but also analytically
after evaluating thecot–function. As a result we obtain the
normalized frequency
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Another possibility to derive an eigenvalue equation is to
use the first two equations of the mode matching procedure
mentioned in chapter 2. The first equation is equ.(6) and
the second follows from matchingH(2)

x to H
(1)
x over the

gap length

A0 sinh �0a e
�j� sin�

� = B0 cosh�0(a� b) : (12)

Eliminating the constants in the equs.(6) and (12) results in
a similar equation to equ.(10) but with an additional factor

g
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Both 0–order approximations are shown in Fig.4 to-
gether with the exact solution obtained by the code PST.
Obviously, the 0–order approximations give estimates with
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Figure 4: Normalized frequency versusa=b for the accel-
erating mode withM = 0 andvph = c0.

about 5% error in case of equ.(13) and even more in case of
equ.(10). For better approximations we go one step further
and add the minus–one space–harmonic in the beam region
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As can be seen from Fig.4, the eigenvalues are now precise
within 2% or less.

The above approximations can also be used to calculate
other RF–parameters likeQ–value andR=Q. While the 0–
order approximation yields values which are not very use-
ful, the 1st–order approach is already quite effective. How-
ever, the formulas are lengthly and will not be given here
for space reasons. Rather we show results for a 90 and 120
GHz structure in Table 1.

0–order 1st–order PST
f=GHz 90.7 (120.9) 93.5 (123.3) 94.6 (124.8)
R0=Q

k
=m
– 77.7 (133) 76.1 (137)

Q – 2670 (2280) 2380 (2040)

Table 1: Results for2�=3–mode structures
a=0.525 (0.3), b=1.27 (0.9), w=2.367 (1.8),
g=0.843 (0.633), t=0.25 (0.2) (all in mm).
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