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Abstract

Observations, measurements, and analysis of
longitudinal oscillations that exhibit singular
perturbations are presented.  While the standard
perturbation technique adequately describes instability
thresholds, it fails to describe the behavior of the electron
beam beyond threshold.  In the presence of narrow band
impedance, at threshold current, an instability develops in
which the amplitude of the synchrotron sidebands
undergoes a sawtooth oscillation.  Since the impedance
can be accurately controlled, and since both the beam
current and energy can be varied, the damping time and
the growth time of the instability, and the amplitude and
phase of the non-linear driving term can be changed.  The
mechanism is explained analytically.  Results from
simulations give insights to details that are difficult to
measure experimentally and to derive analytically.

1  INTRODUCTION
The perturbation theory of the onset of longitudinal

instabilities due to long range wakefields has long been
known.  Open questions remain concerning the motion of
the beam beyond threshold, as little experimental data
exists which shows the detailed dynamics in this regime.
While characterizing the HOMs of the SPEAR RF
cavities [1], we repeatedly produced low frequency
relaxation oscillations.  Although this type of oscillation
has been previously reported [2,3] and studied [4,5,6], the
proposed models do not adequately describe our data. A
characterization in frequency, amplitude, growth time,
and damping time as a function of current, impedance,
and energy was performed.  Those results gave good
clues to develop an analytical model of the oscillations.
The dynamics of the instability was confirmed by
tracking code simulations.

2  EXPERIMENTAL RESULTS
The features of the relaxation oscillation are most

evident for the strongest narrow-band impedance of the
system.  Details of the phenomenon were first found on
the fundamental mode of the idle RF cavity. The
generalization to other HOMs was later confirmed
experimentally.  The longitudinal breathing of the bunch

results from the competition between the impedance
induced driving force and the damping process. The
driving term of the oscillation depends on the beam
current and on the impedance of the HOM.  The damping
of the oscillation comes primarily from radiation, which
increases as a function of beam energy. The spread of
synchrotron frequency can also contribute to the damping
for intense single bunch currents.

A full characterization of the frequency and amplitude
of the relaxation oscillations was made by automatically
varying the three tunable machine parameters while
acquiring the time structure of the synchrotron sideband
power with a spectrum analyzer, tuned as a narrow-band
receiver. Measurements were completed with the use of a
dual-sweep streak camera.

Qualitative explanation of experimental data

A maximum current of 2 mA in a single bunch  can be
maintained in SPEAR run with the parameters below and
the fundamental impedance at its maximum value.

Table 1 SPEAR Experimental Parameters
E

(GeV)
fs

(kHz)
L

(m)
frf

(MHz)
tdamp

ms

2.3 28.5 234 358.5 9.3

At the edges of the instability, the beam synchrotron
amplitude does not execute any relaxation oscillation, but
saturates at a constant value.  The relaxation process
begins at a slightly higher impedance.  The period of this
oscillation always exceeds a damping time, so the
frequency is less than 100 Hz.  The rise time is always
exponential, but the decay time is not. When the spectral
line starts on the higher edge of the resonance, as the
synchrotron frequency shifts during growth, it sees a
stronger impedance. The radiation damping then will be
less effective, and so the damping time increases.  (A
quantitative analysis of this quadratic decay, typical of a
diffusion process, is in preparation.)  This justifies the
asymmetry observed on the damping time, and therefore
on the frequency while sweeping through the resonance
[1]. The instantaneous synchrotron frequency decreases
as much as 13% at the peak of the relaxation cycle, as
predicted by the pendulum equation.
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Streak camera observations

Some important information about the mechanism was
found with a double sweep streak camera.  The synchro-
scan unit was locked to the 3rd sub-harmonic of the RF
frequency. Every 3rd bucket could be seen, i.e. every 3rd

turn was acquired in our single bunch experiment.
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Figure 1: Single bunch streak camera images

The most striking characteristic of these data is that the
bunch executes very large amplitude oscillations and
remains a macro-particle during its growth.  When the
damping starts, the macro-particle starts to break-up. A
large portion stays on the macro-particle orbit while a
second sub-bunch forms near the center, p out of phase
with what remains of the macro-particle. The entire
bunch collapses toward the center, and the sequence starts
again (Figure 1).

3 THEORETICAL MODEL
The bunch behaves as a single macro-particle during its

growth.  A standard driven oscillator [7,8] is used to
represent the macro-particle motion.  The driving force is
given by the classical resonator-induced wakefield:
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Eq. (1)

The integral is a causal function that approximates the
discrete sum of bunch impulses and includes the slow
decay of the excited field.  The variables, t and u, are
continuous approximations of the discrete times:
t = n T0 + t cos (wStPart);   u = k T0 + t cos (wstSource).

Eq. (1) combined with the pendulum equation leads to
a system of two coupled second order equations, one of
which is non-linear.
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with x: Phase excursion;   ap:   Radiation damping rate

ws:   2p Synchrotron frequency;    wrf:   2p RF frequency
RS, wr, ,Q:   Resonator parameters and w w jr ro r= cos

ar = w r Q2 :   Resonator damping rate

The model assumes that the amplitude and frequency
of the synchrotron motion are slowly varying with respect
to the synchrotron period and the short range wakefield
effects can be neglected.

Since the excursion in phase is so large, perturbation
expansion is insufficient to describe observations.  In
particular, the non-linear terms of the external RF wave,
the phase of the source, and the phase dependent terms of
higher order in the wake must be kept.  For multiple
particles, these equations still hold but c is now driven by
the sum of all particles.

For a multiparticle system, c is generated only by the
first derivative of the Center of Mass (CoM).
Furthermore, each particle has c as its only driving term.
In a linear system, the CoM is one of the modes of the
system.  The other modes, orthogonal to the CoM mode,
do not contribute to the driving term and damp.  For a
non-linear system, the situation is slightly different in that
the frequencies of the particles depend on their
amplitudes.  Now the CoM may not be an eigenmode of
the system.  For small non-linearities, however, the
frequency difference is small enough and the wake force
is large enough that the CoM is still a good
approximation to an eigenmode and the above argument
still holds.
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Figure 2:  Wake vs. phase amplitude

The driving term decreases at higher amplitudes as the
bunch rides higher on the HOM wave.  Mathematically,
this is seen in the reduction of the Bessel function

coefficients » ( )J r0
2

w t  of the driving term.  As the

phase amplitude increases, the driving term can decrease
by one order of magnitude, to a value equal to the
damping “force”. The energy fluctuations of individual
particles are now sufficiently large with respect to the
perturbing voltage that they can go out of phase with
respect to the CoM, and no longer contribute to the
driving force.  The out of phase particles slip further until
they become p out of phase with the macro-particle.
Now they form a “p-mode” with part of the macro-
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particle.  Since this “p-mode” does not have any driving
term, it damps, bringing all of the beam back to the center
of the RF bucket, where the bunch can recollect into a
macro-particle and start its next cycle. The bifurcation
has occurred because the characteristic of the bunch
changes from a single particle to a multiparticle system.

4  SIMULATIONS
A multiparticle tracking code has been modified from

the standard short range wake multiparticle model to
include a long range HOM driving term, d.
d d T T x Anew old r o r o c m old n= - +exp( ) cos( ) . ,a w

( )

cos
(sin( ) sin ( ))

cos cos

.wx x
T

x
x x x F x

T x r d T A
R I

hV x

new old
s o

s
old s s s

p o old p new s o n
r

r

s

rf s

= - + - -

- + +

w

a a w
a

j

2

22
2

x x T xnew old o new= +

with Fs.w:   short term Wake Force in appropriate units,
computed with distribution from the previous turn

.xc m:      Center of mass velocity;     r fluctuations
To :         Revolution period;    An:    normalization
An important assumption here is that the synchrotron

motion is much slower than the revolution period.
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Figure 3  Simulations Intensity in logarithmic scale

The HOM is excited by the CoM mode of the beam.
This excitation is the impulse train of the passing particle;
the field decays over many turns.  In each turn, the
response to the current impulse is added to the existing
field.  The results of this code are in good agreement with
experimental observations and the analytical mechanism
described above.  Using the measured machine and HOM
parameters, relaxation oscillations with amplitudes and
frequencies comparable to those measured on SPEAR can
be reproduced.  Growth time, amplitude, and frequency
increase with the product of current and impedance.

5 GENERALIZATION TO HOMS
The amplitude of the oscillations of the HOMs is given

by the 

w

r  value at which the damping term balances
the driving term.  This driving term essentially follows
the product of the current with the curve represented in
Figure 2.  The maximum amplitude t is such that  r »

1.5. Accordingly, t is smaller for higher resonant
frequencies. Streak camera measurements showed a ratio
of 2.5:1 in maximum phase amplitude between the
fundamental (h=280) and the HOM at h=751.  A strong
HOM is typically one to two orders of magnitude weaker
than the fundamental.  Much higher current is needed to
generate the relaxation oscillation.  Furthermore, the
wider frequency distribution for an intense bunch
prevents it from forming distinct common and p modes,
destroying the regularity and amplitude of the relaxation
oscillation.  In this case the effect of the short term wake
cannot be neglected.

CONCLUSION
Extensive measurements, simulations and theoretical

analysis were carried out to understand the mechanism of
longitudinal coupled-bunch instabilities beyond
threshold.  The fundamental behavior of these instabilities
is now understood.  A more complete discussion of
experiments and analysis will be presented in a
subsequent paper.
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