EFFICIENT C++ LIBRARY FOR DIFFERENTIAL ALGEBRA

John R. Cary, Tech-X Corporation and University of Colorado, Boulder, USA
S. G. Shasharin@ech-X Corporation, Boulder, USA

Abstract

Differential Algebra is heavilyused in accelerator
physics forrapid integration, long-term stability studies,
and non-linear map analysis. C++ witloperator
overloading is a natural language famplementing DA,
but sometimes is too slow. Weeated grototype of a
DA vector class, which,due to use of features of
multiplication tables, expression templat@sd reference
counting is faster than other C++ packages.

1 INTRODUCTION

Numerical Differential Algebra methods hav¥eund
increasing use as the&an be applied to a wideriety of
systems.

one to determine how a system varies widrameters to
machine accuracy with little additional programming
effort. Therearealso applications talynamicalsystems,
such asaccelerators. DA use has begescribed in the
literature (seedRefs. [1-2]) and comes from thefact that
onecanobtain non-linear map by integratirtdgh-order

In the study of system sensitivities or
optimisation, numerical differential algebra methods allow

2.1 Expression Templates

Simple-minded operator overloading leads to creating
many extra temporaries and exto@ps. Letsconsider an
example when 3 vectors are added: a = x +y ##&st, a
temporary, temp, for holding (y + z) igreated and the
first loop for assigning the value iperformed. Then
secondtemporary, temp2, for (x + templ) geated and
looping is carried out again. Finally, last loop assigns a
to temp2. Expression TemplaeT) techniqugRef. [8])
allows one toeffectively unroll these loops into one, so
that the equivalent code will be:
for(int i = O; i<length; ++i) {

*q = *X + *y * pxz:

a++; X++, y++, Z++;

}
Some people will say that this is justhand-coded C,
so what is the point? The point is that ET allowkeep
elegant abstractions of C++ (so that yman use
overloadingandwrite a = b + ¢ + d for such objects as
matrices, vectors etc.), but the computational weik
be equivalent tohand-coded C. This technique was

DA vectors in the differential equations describing particlsuccessfully implemented in our DA vector class for

motion.

In our definition (morenarrowthan general differential
algebras), Differential Algebra asrder n is formed by
vectors, whose components are obtained-oyderTaylor

addition, subtraction, multiplicationand division by a
scalar. Resultingspeed ofthese operations isrder of
magnitude fastethan inZLIB andLEGO. Examples of
the comparisons resultseshown on Figs. Jand 2: our

expansion of functions in d-dimensional space. To explaDA vector class is an order of magnitude faster ttmies

this, we mustdescribethe representation of a D#ector
in the class. In order to represent all functions in terms
DA vectors, we need tdefine basic arithmetic operations
(like +, *etc.) between DA vectorand implement them
numerically. There are several numerical
implementing this, but some of themre written in
computationally archaic languages (seeRefs. [3—4]),
others are written in C++, but relatively slow f@asons
we describébelow (Refs. [5-7]). Wereated aprototype
of a newC++ library (TXDA) which overcomes usual
limitations of C++ and exploits some features of
multiplication tables for fast multiplication.

2 OVERCOMING TRADITIONAL C++
LIMITATIONS

C++ has manyadvantages: it is object oriented, has

operator overloadingand is widely used. But its
advantagegabstraction)lead to substantial penalties in
speed, if operatorare implemented straightforwardly as
described in most textbooks.

libraries

using traditional operator overloading.
of

DA muttiplication: a = b *

1.80E-03

1.60E-03

1.40E-03
9 1.20E03
]

’ 1.00E-03

2

% 8.00E-04
6.00E-04
4.00E-04
2.00E-04

0.00E+00

0 200 400 600 800 1000 1200 1400 1600 1800

I engt

Figure 1: Comparison of the execution time
for by two double numbers in ZLIB and
TXDA (DAV) versus vector length. The
results are obtained on SGI/Indy using the
KCC conpiler

1236

DA addtior a= bt b that keeps track of the number of references there are to it.
At copy time, one simply increments the number of
S0EE references tahe letter object. Only when an object is
70E @ [PO changed is aew copy of the letter objeechade. Upon
e destruction, the counter idecremented, andhe letter
5 comn pbject is.destroyed only if theare nomore references to
$ it. We implementedreferencecounting in TXDA and
g 40EG results of the speed comparison are shown on Fig. 3. Our
S0E®E results lie on the axis (execution time < 1.e-ahyl do
N not depend on the vector length.
LOE- G £ 3 MULTIPLICATION
0.0E D SV It is natural to use a multiplication table for
0 1000 2000 300 400 5000
Jengt implementation of multiplication of DA vectors.After

studying literature we concluded that using
lexicographically graded multiplication tables,described
by Alex Dragt (Ref.[9]) would be advantageous. An
ungraded multiplication table is obtained by looping
through theindex ofthe firstfactor (externaloop) with
the internal loop running through tliredex of the second
2.2 Reference Counting factor. Foreachpair of indices there is an integer that
corresponds to the product indexwdiich this coefficient
An object is copied each time it is passed by vahte@ productcontributes. Ithere is nosuchindex (because

a function, eachtime it is returned byvalue, and each the productexceedshe order ofthe DA) the row is left
time it is assigned. Since DA vectasd DAmaps can qut of the table.

easily be large (represented by thousands of real numbers),

such copies can take a significant amount of time arghble 1: Multiplication table: product index (ip) for given
memory even when thegre not necessary. For example, indices (ifl, if2) of the factors.

Figure. 2: Comparison of the execution time
of addition in ZLIB and TXDA (DAV). The
results are obtained on an SGI/Indy using the
KCC compiler.

when returning a vector by value, the object is copied to a . . .
variable in the externgto the method) namespacehen P if1 if2
all that is needed is totransfer the object from one 1 0 1
namespace to another. 2 0 2
_ 3 0 3
DA assignment: a=b 4 0 A
1.40E-03
TR 5 0 5
LAEDIL | A 6 0 6
. 1.00603 [|—+—LE0 V4 0 7
g 8.006-04 [8 0 8
2 9 0 9
O 6.00804 [10 0 10
4.00504 | 11 0 11
20604 | 12 0 12
- 13 0 13
0.00E+00 ¥ oo + > 12 o 1a
0 1000 2000 3000 4000 5000
lengt 15 0 15
16 0 16
Figure 3: Comparison of the execution time of 17 0 17
assignment inZLIB and TXDA (DAV) versus 18 0 18
vector length. The resultsare obtained on 19 0 19
SGl/Indy using the KCC compiler.
. 8 2 3
The reference counting method allows “shallow
Co ; .) 11 2 4
copying” (through pointers) with security of thegular
copying. It puts the representation of the object in an 13 2 2
interior letter objectand adds tothe letter class aounter 14 2 6

1237

16 2 7
17 2 8
18 2 9
12 3 4
14 3 5
15 3 6
17 3 7
18 3 8
19 3 9
0 0 0
4 1 1
7 2 2
9 3 3

Table 1. Multiplication table giving product index (ip) for

given indices (if1, if2) of the factors.

(1]

(2]

Table 1 shows a part of the table for three-dimensional,

order-3 DAvectors,where ip isthe index of the product,
if1 is the index ofthe first factor,andif2 is theindex of

] M. Berz, COSY

the second factor. In the above table we have shown only

the entries withifl < if2. We foundthat we obtained

substantially betteperformance bybreaking our table up

into the subgroupings shown above. For the asymmet['lﬂd

parts of the tableifl # if2, we usedonly the above

[5]

loops and added in trether terms with the same lookup,

i.e., c[ip] += a[if1]*b[if2]+a[if2]*b[if1]. Then we add the
symmetric parts.
simply stepping through thsecondindex, and the first

index is held constant. Hence, the only lookup is that

the product coefficient index. Indeed, for parts of the
table, whereif1=0, eventhe product indexneedonly be
incrementednot lookup upeachtime. Ultimately we

implementedthis in very efficient pointer arithmetic.

This was implemented and gave us an increaspaed of
a factor of2-8 over existing C++ librariegseeFig. 4).
For tests we used dimension 6 and order up to 12.

2 CONCLUSION

We created grototype of DA library which combines

benefits of object oriented approach (writterGn+) with
the efficiency of procedural languages.

Foeach ofthese subtables one is

&
[7

(8]

{9] A. Dragt,

1238

DA mulipl icatbn

40E-01

3.5E-01

3.0E-01

25E-01

20E-01

CPU time

15€-01

1.0E-01

5.0E-02

0.0E+00
0.0E+00

1.0E+05

2.0E+05 3.0E+05 4.0E+05 5.0E+05

#double mu ltiplications

Figure 4: DA multiplication time for DA
versus the number of primitive multiplications
of real numbers.

REFERENCES

M. Berz, "Differential algebrai®escription ofBeam
Dynamics to very HighOrder," Particle Accelerators,
24, 109 (1989).

M. Berz, “Differential algebraic Approach of Normal
Form Theory,” Inst. Phys. Conf. Ser. No 1@hper
presented atnt. Workshop Nonlinear Problems in
Accelerator Phys. Berlin, 1992.

INFINITY version 7 Manual,
MSUCL-977 (1996), Michigan State University,
East Lansing, Ml 48824;
http://www.beamtheory.nscl.edu/cosy/

A. Dragt et. al ,"“MaryLie 3.0 User's Manual,”
University of Maryland Physics Department, 1994.

L. Michelotti, “MXYZPTLK and BEAMLINE: C++
Objects for Beam Physics,” AIP Conf. Proc. No. 255
(Proc. Advanced Beam Dynamics Workshop on
Effects of Errors in Acceleratortheir Diagnosis and
Correction, Corpus Christi, Texas, 1992).

N. Malitsky, A. Reshetovand Y. Yan, “ZLIB++:
Object Oriented Numerical Library for differential
algebra,” preprint SSCL-659, 1994.

Y. Cai, M. Donald, J. Irwin, Y. Yan, “Lego: A
Modular Accelerator Designer Code,"SLAC-7642,
August 1997.

T. Veldhuizen, "Expression Templates,"
Report, v. 7 No. 5 June 1995, pp. 26-31.

M Venturini, “Design of Optimal
Truncated Power Series Algebra. Routines:
Computing Sumsand Ordinary and Lie Products of
Polynomials Usong Monomialndexing or Linked
Lists,” University of Maryland, September 1996
(Draft).

C++

