
LINEAR AND NONLINEAR EVOLUTION OF LONGITUDINAL
INSTABILITIES IN THE ESR

I. Hofmann, GSI, Darmstadt, Germany
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Abstract

We have investigated the dynamics of longitudinal insta-
bilities of coasting beams in the ESR for several working
conditions determined by different values of the RF cavity
eigenfrequency. The experimental data resulting from our
measurements have shown a good agreement with theoret-
ical predictions for the linear phase of the instability and
with numerical simulations carried out using the particle-
in-cell code PATRIC. Finally, a nonlinear cold fluid model
is proposed to explain typical beam late stage evolutions
such as wave steepening and generation of higher harmon-
ics. The predictions of this model are also compared with
observed data and with simulations.

1 INTRODUCTION

Coherent instabilities of particle beams inaccelerators and
storage rings, which are produced by the action of self-
induced electromagnetic fields on the beam particles, have
recently become object of new attention as a consequence
of the development of the research on high-current ma-
chines operating below transition energy for several appli-
cations (e.g., for heavy ion fusion [1]).
Insofar the beam longitudinal dynamics is analyzed, one
might show that a high particle density in a circular ma-
chine is able to cause various self-field effects associated
with the longitudinal motion of particles. In particular,
there exist conditions under which longitudinal density
fluctuations in a coasting beam get amplified because of
the interaction with the fields excited in the surroundings
[2]. These conditions can be expressed via the longitudinal
coupling impedance that models the environment in which
the beam propagates [3].
Experimentally the unstable longitudinal motion of the cir-
culating particles can be detected by a pick up as a modu-
lation of the beam current. In the measurements we carried
out at the ESR [4, 5], longitudinal self-bunching and further
nonlinear evolution have been clearly observed for well-
defined impedances by means of a precise cavity eigenfre-
quency control. A very good agreement between the pre-
dictions of the linear theory and the early phase of the ob-
served instability has been found to exist for the working
conditions we operated in. In this paper we also discuss
that wave steepening and generation of higher order har-
monics can be explained with a nonlinear fluid model.

2 MEASUREMENT PROCESS AND
RESULTS

2.1 Data acquisition and analysis

The total longitudinal impedance acting on an ESR beam
consists mainly of the space charge reactance and a narrow-
band cavity contribution [6]. Thus, the longitudinally un-
stable evolution of aC+6 beam (I0 = 0:3 mA, f0 =
1:886633 MHz) has been systematically explored at the
ESR by varying the coupling impedance of the cavity,
which depends only on the difference between beam rev-
olution frequency and cavity eigenfrequency (�f = f0 �

fcav), and observing the longitudinal pick up signal in sev-
eral different situations. For each measurement the beam,
after being injected and then cooled down to an equilib-
rium momentum spread(�p=p)FWHM = 1:1 � 10�5, was
proven to be stable in a situation of strongly detuned cav-
ity (j�f jin � 70 kHz), in spite of the high current, ex-
ceeding some 4 times the Keil-Schnell limit (the space
charge impedance alone, about -i700 
 per harmonic, can-
not destabilize the beam [3]). Then, the eigenfrequency
of the ESR cavity was tuned much closer to the revolution
frequency of the beam (�f�n spanning between�32 and
18 kHz through the different measurements) by a linear fre-
quency ramp within15 ms. Starting from30 ms before the
eigenfrequency ramp, the beam current signal from a lon-
gitudinal beam monitor was sampled at2 MHz and stored
over1 s. Due to the very small energy spread of the beam
and to the choice of an appropriate sampling frequency, this
signal was effectively undersampled with no loss of infor-
mation: the bunch shape could still be reconstructed by tak-
ing a series of 17.64 samples from different turns, and high
accuracy zooms were made possible in the off-line analysis
by interleaving the samples fromn subsequent series [4].
For the interpretation of the measurements we plot the cav-
ity detuning curve on the stability diagram in the complex
plane (Fig. 1). When the cavity eigenfrequency comes suf-
ficiently close tof0, the impedance working point in the
longitudinal stability diagram ends up far outside the sta-
bility boundary and the beam grows unstable.
In order to control precisely the ESR cavity eigenfre-
quency, a small external RF voltage (300 V) was present at
the cavity gap. Its effects, which are not taken into account
in the linear theory, may be anyway studied via numerical
simulations, where the contribution of an external electric
force could be easily added besides the self-induced fields.
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Figure 1: Stabilitydiagram, rise time trajectories and cavity
detuning curve (�f spanning from�1 to+1).

2.2 Interpretation of the measured data

The analytical theory predicts that due to the positive re-
sistive cavity impedance the longitudinal instability arises
on the slow wave, which corresponds to the plasma wave
running backwards in the beam frame. This may be seen
in Figs. 2a and 2b. In Fig. 2a the beam modulation also
breaks and splits up into a higher harmonic order oscilla-
tion from t = 200 ms.
We studied the unstable modulation signal from different
measurements corresponding to different working condi-
tions. At the early stage of the instability we observed
mostly symmetric sinusoidal signals, whereas in the non-
linear region asymmetric bunch shapes occurred. The wave
front steepening is a common feature of waves in the non-
linear regime [7] (see also next section).
The rise times from the linear phase of the instability were
calculated by performing an exponential fit through sev-
eral beam current first harmonic signals analyzed at differ-
ent time points of the beam evolution. Then, these esti-
mated rise times have been confronted with the theoreti-
cally predicted ones and with those evaluated from the nu-
merical simulations carried out with the PIC code PATRIC.
In Fig. 3 theoretical, simulated and measured rise times are
plotted on the same graph: the results from PATRIC, along
with the measurements, show a reduction in the rise times
caused by the residual RF voltage in the vicinity of the res-
onance conditionj�f j�n = 0.

3 FLUID MODEL FOR THE
NONLINEAR EVOLUTION

A simple nonlinear cold fluid model of a coasting beam
is used to explain the generation of higher order harmon-
ics and steepening of line charge density profiles observed
during the development of longitudinal instabilities in the
ESR. Starting from the Vlasov equation for the beam lon-
gitudinal dynamics and after its integration over the veloc-

ity space with the method of the distribution function mo-
menta, one obtains in the cold fluid limit the following set
of differential equations:
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Here �(s; t) and U (s; t) represent the beam charge line
density and its mean velocity along the machine circum-
ference. The electric driving term - at the right hand side of
the second equation - using the narrow-band storage ring
impedance formalism [8], becomes:

�(s; t) = U0

X
n

_Z(n!0)�n(t)e�ink0s + �ext(s; t) (2)

For the ESR, the impedance_Z(!) is mainly made up of
the space charge impedance and the cavity contribution.
Since the nonlinear convective terms have been taken into
account in our model, the numerical solution of Eqs. (1)
allows us to follow the beam evolution up to its late non-
linear phase. One should keep in mind, at any rate, that
the predictions coming from such a model are correct only
insofar as the effects of the kinetic pressure may be ne-
glected in the momentum conservation equation, and then
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Figure 2: Waterfall diagrams. Here the line density traces
along the ring are plotted over one another at several in-
stants in the interval50� 350 ms.
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Figure 3: Rise times of the longitudinal instability: mea-
sured, theoretical, simulated.

this system of fluid equations is closed at the first order.
The beam current first harmonic grows exponentially in the
early phase, in agreement with the predictions of the lin-
ear theory. Similarly to what we observed in simulations
as well as in measurements, higher order harmonics are
produced later on, after the instabililty has gone through
its linear phase and the first harmonic has become high
enough to significantly drive their growth. If we compare
the shapes of the line density profiles obtained by using the
fluid model with those measured at the ESR before the sat-
uration occurs and with those simulated with the PATRIC
code at the same time instants in the instability develop-
ment (�f = �17:4 kHz) an excellent agreement is found
out to exist (Fig. 4). Unfortunately the saturation of the
instability doesn’t occur in the cold fluid evolution: the
line density modulation would keep going up as long as
the beam is not completely bunched. Nevertheless, by hav-
ing retained the nonlinear convective terms in the equations
of motion we have shown that wave steepening and higher
order harmonics generation are purely fluid effects having
no connection with the actual kinetic structure of the beam.

4 CONCLUSIONS AND OUTLOOK

The instability rise times measured at the ESR in different
operating conditions satisfactorily fit to the ones expected
from linear theory and to the simulated ones. The presence
of a residual RF gap voltage can significantly influence the
instability rise times ifj�f j�n is very close to0.
Wave steepening and generation of higher order harmon-
ics, which are observed late in the instability evolution, are
nonlinear fluid effects. Saturation and energy spread dy-
namics need to be explained by futher studies.
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Figure 4: Distribution of the line charge density during the
wave steepening phase: (a) cold fluid model; (b) ESR mea-
surements; (c) PATRIC simulation.
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