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Abstract

The MAPA (modular accelerator physics analysis) ac-
celerator modeling code1 symplectically advances the full
nonlinear map, tangent map and tangent map derivative
through all accelerator elements.2  The tangent map and
its derivative are nonlinear generalizations of Brown’s
first- and second-order matrices [1], and they are valid even
near the edges of the dynamic aperture, which may be be-
yond the radius of convergence for a truncated Taylor se-
ries.  In order to avoid truncation of the map and its de-
rivatives, the Hamiltonian is split into pieces for which
the map can be obtained analytically.  Yoshida’s method
[2] is then used to obtain a symplectic approximation to
the map, while the tangent map and its derivative are ap-
propriately composed at each step to obtain them with
equal accuracy.  We discuss our splitting of the quadrupole
and combined-function dipole Hamiltonians and show that
very few steps are required for typical magnets of a high-
energy accelerator.

1 THE MAP & ITS DERIVATIVES
The n-dimensional phase space map describing propaga-

tion of a particle through an accelerator element consists
of n equations of the form:

p p p p pi i n= ( )1 2, ,..., , Eq. (1)

where the overstrike indicates the final value of a phase
space variable, lack thereof indicates an initial value, and i
ranges from 1 to n.  Ray tracing requires that one accu-
rately calculate the n functions of Eq. (1), either analyti-
cally or numerically.

The tangent map is an n by n matrix, with coefficients
Tij given by the partial derivatives of the map:

T
p

p p p pij
j

i n= ( )∂
∂ 1 2, ,..., , Eq. (2)

where i and j both range from 1 to n.  If the map is de-
rived from a Hamiltonian, as is the case for accelerators in
the absence of synchrotron radiation, then the tangent map
is a symplectic matrix.  Evaluating the tangent map on
the accelerator axis (i.e. setting all p1  through pn in Eq.
(2) to zero) destroys it's symplectic character and yields
the familiar linear R-matrix [1], with coefficients inde-
pendent of the phase space variables.

                                                
1 Work supported by Tech-X Corporation and by U.S. DOE
grant no. DE-FG03-96ER82292.
2 See URL http://www.techxhome.com for details of the free
C++ accelerator modeling class library used by MAPA.

The tangent map derivative is an n by n by n tensor,
with coefficients S ijk given by the second partial deriva-
tives of the map:

S
p

T
p p

p p p pijk
k

ij
j k

i n= = ( )∂
∂

∂
∂ ∂

2

1 2, ,..., , Eq. (3)

where i, j and k all range from 1 to n.  Evaluating the
tangent map derivative on the accelerator axis (i.e. setting
all p1  through pn in Eq. (3) to zero) yields the familiar
second-order TRANSPORT coefficients [1], within a nu-
merical factor.

2 ALTERNATIVE TO DA APPROACH
Given the map, tangent map and tangent map derivative

for a periodic structure, one has all the information re-
quired by root-finding algorithms for obtaining any and all
fixed points of the map (i.e. closed phase space trajecto-
ries), even if these trajectories are far from the accelerator
axis.  Furthermore, once a closed trajectory of interest has
been found, one then has all the information required to
calculate and propagate the quantities describing particle
motion in the vicinity:  Courant-Snyder (also known as
Twiss, or for the case of fully-coupled motion, Mais-
Ripken) parameters, linear and second-order dispersions,
chromaticities, etc.

Of course, one can calculate a truncated form of the
map with a DA (differential algebra) package (see e.g.
Ref.'s [3] and [4]), and then trivially obtain truncated
forms of the tangent map and its derivative.  The power of
the DA approach, when coupled with normal form meth-
ods, [5] is undeniable.  However, there is always the dan-
ger that the associated multi-dimensional truncated power
series does not converge in phase space regions far from
the accelerator axis, and such regions can be of interest.
Thus, it can be helpful to have an alternative approach
when, for example, studying phase space dynamics near
the limits of the dynamical aperture.

This is accomplished in the MAPA code by using the
Yoshida [2] method, for which the Hamiltonian of a
finite-length element is split into two or more exactly
solvable pieces, such that the map, tangent map and tan-
gent map derivative can be obtained analytically for each
piece.  When composing the map in appropriate Yoshida
fashion for each step, the tangent map and it’s derivative
can also be composed.  Thus, all three quantities are ob-
tained for the full element, and the tangent map is guaran-
teed to be symplectic to machine accuracy.
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3 FINITE-LENGTH QUADRUPOLE
The Hamiltonian describing particle dynamics in a

finite-length idealized quadrupole magnet has the form

K s P
G

B
x y P P P P

s s
x y=

+





+ −( ) − + + − −
1

2
1

21 2 2
2 2 2αδ

β βτ
ρ

τ τ
~ ~ ~ ~ ~

Eq. (4)
where α  is the momentum compaction factor, δs is the
relative deviation between reference and design momenta,
G1 is the quadrupole gradient in T/m, Bρ is the magnetic

rigidity in T-m, the canonical phase space variables are:

p x p Px x s s1 2= = = (meters)    ;
~

β γ β γ ; Eq. (5a)

p y p Py y s s3 4= = = (meters)    ;
~

β γ β γ ; Eq. (5b)

p c t t p Ps s s s5 6= = −( ) = = −( )δτ γ γ β γτ (meters)    ;
~

; Eq. (5c)

 and we have followed the MAD-8 conventions [6].  This
Hamiltonian must be split into two pieces, in order to
obtain the map via the Yoshida method.

The approach taken in the tracking code TEAPOT [7]
and some other codes is to split a finite-length quadrupole
into N thin quadrupoles, which is equivalent to a drift-
kick splitting of the Hamiltonian, where the (x2-y2) term
is separated from the other terms.  It has long been advo-
cated [8] (and implemented within the SAD code) [9] that
a more accurate approach is to split the Hamiltonian into
a piece that generates the dynamics of a purely linear quad-
rupole and a piece that represents nonlinear chromatic ef-
fects.

The split used in MAPA is K=Klq+Kchro, where
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Eq. (6)
 and
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 It is shown in Table 1 that, for a given number of steps,
this splitting is far more accurate than a simple drift-kick
splitting.  A theoretical explanation for this improvement
in accuracy has been developed recently [10] in the context
of using Zassenhaus formulas to compute the symplectic
map for a truncated Hamiltonian -- an approach that has
been implemented in the code MaryLie 5.0. [11]

Table 1:  The number of integration steps required to
achieve a specified relative accuracy in the map for 4 GeV
electrons traversing a quadrupole with L= m and k=1m-2

accuracy 1.0e-04 1.0e-06 1.0e-08 1.0e-09
drift-kick 2 10 84 256
lq-chro 1 2 4 10

The Yoshida approach used in MAPA has the advantage
that it does not truncate the equations of motion, as is
done in the Lie algebra approach used by the MaryLie
code.  Also, this approach is more accurate (for the same
number of steps) than TEAPOT's use of thin quadrupoles.
More importantly, the effect of arbitrary high-order multi-
poles distributed throughout the body of the quadrupole
magnet can be correctly included by adding an appropriate
third term to the Hamiltonian.

All components of the map, tangent map and tangent
map derivative have been calculated for the Hamiltonians
of Eq. (6) and Eq. (7). [12]  These results have been im-
plemented in the MAPA code and tested by verifying nu-
merically that the tangent map is symplectic and by nu-
merically generating first and second partial derivatives of
the map for direct comparison with the analytic results.

4 THE SECTOR BEND
A particle traversing an idealized sector bend is a special

case of charged particle motion in a uniform magnetic
field.  Thus, the map can be obtained analytically. This
map is presented in Ref. [13] for the ultra-relativistic
limit (β=1, γ finite) and was implemented in the SAD
code [9].  The map was generalized to finite β and imple-
mented in the TOPKARK code. [14]

The idealized sector bend Hamiltonian has the form:
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Eq. (8)

 where ρ0 is the radius of curvature.  All components of
the map, tangent map and tangent map derivative have
been calculated. [15]  We present the map here:
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p p
_

6 6= Eq. (9f)

 where θ is the bend angle in radians.
A combined-function sector bend includes quadrupole

and/or higher-order multipole fields along with the usual
dipole field.  The vector potential for these multipoles,
which is required to define the Hamiltonian, must be ob-
tained in the cylindrical coordinate system of the sector
bend.  This has been done in Ref.'s [16] and [17] for mid-
plane symmetric fields (i.e. no skew multipoles).  The
results of Ref. [17] include the effects of a dipole field
strength that varies along the bend arc.  This vector poten-
tial is obtained as an expansion in x and y.  In Ref. [17],
these coefficients vary along the bend arc, if the dipole
field is not constant.

The resulting Hamiltonian for a combined-function sec-
tor bend can be split into the sector bend Hamiltonian
shown above and another exactly solvable piece, making

it well-suited to the Yoshida method.  All components of
the map (through fifth-order, which includes quadrupole,
sextupole, octupole, decapole and duodecapole terms),
tangent map and tangent map derivative for the combined-
function piece of this Hamiltonian have been calculated,
assuming a constant dipole field. [18]

An idealized sector bend does not include fringe fields,
so one must implement an appropriate fringe field model
before and after the element.  Reference [16] presents both
the third-order Lie polynomial and the corresponding
second-order TRANSPORT coefficients for the dipole
entrance and exit fringe fields.  In fact, the map corre-
sponding to the Lie polynomials of Ref. [16] can be cal-
culated analytically, as can the components of the tangent
map and tangent map derivative. [19]  For example, the
entrance fringe map is given by:

p p f p f p
_

1 1 112 1
2

233 3
26 6= − − Eq. (10a)

p p R pxf

_ _

2 21 1= + Eq. (10b)

p p f p p
_

3 3 134 1 3 6= − Eq. (10c)

p p R pyf

_ _

4 43 3= + Eq. (10d)

 where pxf and pyf are defined in Eq.'s (11) below, and the
fijk and Rij terms refer to the entrance fringe Lie polyno-
mial and R-matrix of Ref. [16].

_________________________________________________

p
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  ; Eq. (11a)
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