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Abstract structure by electron beam and external RF-source can

For simulation of transient beam dynamics in th€e founded from the general theory of waveguide
accelerating systems we developed a code that is basedgitation [6]: B
simultaneous solution of a wave equation and particle  E = [ dwexp(iwt){Z[Cy(w, 2) Ey(w, )+
motion equations. If the processes under consideration S

are slow, there is a great simplification in the procedure +C (0,2 E (@ ”r)]+ﬂ ?'}+k . (1)
of calculating of current integral which describes the —s\ -s\ iw Jor K- G,

current loading. For applying this approach to dC,, . 1 . . o
multisectional accelerators we developed a procedure of qz | hs(@Cys =2 ] Ess(@F)dry, (2)
calculating of such current integrals for each s S

accelerating section with consecutive injection ofvhere Es (o F):%ES k(@,T;)exp{2mk z /D) - eigen

particles from the previous section into the following onegq anoidal functions of waveguideE ( = EE), h(e) - a
- 1 =

1 INTRODUCTION wave number, j, =—— Jj(t)exp{ut Yt. If the RF-

. . . 211
The acceleration of intense bunches in slow-wave, °°
{gnal of external source and current have a narrow

structures has some features that have to be take i ; it i wral t that th
account under studying the dynamics of electron bea cquency spectrum, It 1S natural to suppose fhat the
urier transform of the electromagnetic field in the

One of the main effects is a beam loading. It includes . .

changing of the characteristics of the accelerating Wa\%rugture will b? nonzero near frequencies that are
under presence of bunched electron beam. Anothg}umpIe the Worklng frequencyp, (w=nc,) and can be
problem is an excitation of higher order passbanids 'epresented in the form:

particular one that lead to BBU (see, for example, [1-3]). F= § Fn (t) expinwgt )+ k ., (3)
Beam loading effects, especially transient, play an n=1

important role in the high current accelerators, so man here F. (1) :n%}fj/(f)F expli (w, —wt)] - functions
efforts were and are made for developing the methods n noy-A2 0

that could describe these effects properly. The MOg§i5i have a slow variation << w,- frequency interval in
frequently used method is based on the equivalent CirC\J/\i/hich F,, is nonzero. If we take into account only zero

approach. This method gives possibility to obtain man§ o I ar/ ¢ th
useful transient characteristics, but in many cases t gpansion in a small parametéy/w,, except of the

results are very approximate. The more general meth¥@ve number K, & ¥ h w, }Awdh; /o) and
is based on the solving (numerically or analytically) deglect a quasistatic fields, we obtain:

nonhomogeneous wave equation. There are many E= 2 2 expinwyt)
approaches that can be used for simplifying the procedure s - _
of obtaining the transient characteristics. One of them can {Csn(t 2 explihs(rwy) 4 E( 0y, %) + (4)
be uged in that case when the transient process may be +C_g n(t, 2) expl-ihg (g ) 7] El(wy, B+ c6
considered as slow one as compare with the fast
N o . 0C,q 1 9dC..,
oscillation of electromagnetic field [1,2,4,5]. In this paper —_ 4 = =
we present our results of developing a mathematical 0z Vgsn Ot ®)
model that was used for simulation of transient processes explih. (nw, L
. . . _ p[ s( 0)] - — -
in multisectional accelerator. = o) I Tn Ezs(nooy, ) diy
s(n(*)o) S

2 ORIGINAL EQUATIONS wherevg ¢ , =1/(dhg/ @) o, - a group velocity of the

Let's consider a mathematical model that can b&th eigen wave. Summation in (4) is taken.on over all
used for describing of the transient beam loading effect¥/P®S of waves that propagate at frequenciesncy,. '
Electromagnetic field which is excited in slow-waveField attenuation can be taken into account by adding

termsta C, ¢ ,to the left-hand side of Eq.(5).

For obtaining the system of equations that describe an
celeration process with a current influence we ought to

tsn

! At present, these effects are often called as Wake FielgC
Effects
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connectj,, andC, .. In general case this connection carunder consideration - they must be slow not only in
be found from kinetic equation comparison with the oscillations on the working

of of 0. 1 _ [pf frequency, but also with the relaxation time that is
E+VE+GBE+EN H]EE:Q (6) determined by the particle flight time through the

. e ' interaction region. Detail analyze shows that this
Solving Eq.(6) by the characteristic method, we find th%‘\ssumption restrict the frequency width of signals - it

expression for a current: must be less than 50 MHz. Similar restrictions (even

t
j= JdtoJdr o dpy fo(Toto POV Y of Wy X more rigid owing to the presence of couplers) flow out
—e0 (7) from the dispersive properties of slow-wave structures
- - _ because their first passband has width of the order 100-
xt-t,(zy, T, =T ;
ot —t,(Zy, s P)IA T~ 7413 - Al 200 M.

wheret,, 1, ,f are the solutions of the motion equations. Simplification of the procedure of calculating of

Determination of a slow-varying amplitudg, by e integral in the right-hand part of Eq.(5) connects with
applying Fourier transformation to Eq.(7) is a difficultcircumstance that the integration regiit,z) which is
procedure, so it is often used some averaging operat@fstermined by Eq. (11), can be found in an explicit form.
that give possibility to find this value with definite |ndeed, under these conditions the particle fly-in time

accuracy. One of them is: t, (. 2) into the point with coordinateis approximately
M, ] = —HTIOéizt'expGnu)ot')T t') To=2m /g .(8) periodic functiont,, so many-connected regida(t, 2)

0 t-To/2 can be replaced on the single-connected one:
Substituting into (8) the Fourier expansion of the t-To/2<ty<t+Ty/2 (12)
current, we obtain Under this, calculations of the motion equations of
M= }f’dwsm[n(nwo ~w) /o] [ expi oo, @)t ]= particles which flied into structure at moments that are
M Tt(Ney, — ) / w, @ 0 determined by Eq.(12) can be conducted with a field

(_1)n_k i amplitude taken at time
=7 + —_—kexpﬁ 0 - K)o t]+.... (9) In multisectional accelerators we have several
kzn (N—K) iw, dt structures. Each section has its own RF-source. All

It is follows from (9) that in the case of slow processesources are synchronized, but there may be staggering the
(d j/dt<<w,j) applying of the averaging operator totimirjg .of the klystron pulses with respe(?t to the
function gives the value of its slow-varying amplitudeP€ginning of ~the current pulse. The described above
Taking this into account, we can write the right side of*éthod, in principle, can be applied for each accelerating

Eq.(5) in the such form: section. For doing that we have to know the function
fd7, 7 E, = fo(to.Too, Po) at the entrance of the considered section,
S that is, we must know a solution of kinetic equation (6)
B2 expnat') for previous_sections. This demaqd returns us in the initial
=JdrE., | d 0 N E state and this approach can not simplify the task.
s t-T,/2 0 (10) For using the described above method in the case

of multisectional accelerators, we note that in general
case there is no necessity to understand under
folto, o Po) in EQ.(10) (and in all subsequent
formulas) the distribution function at the entrance of
where the integration regioB(t, zZ) over the fly-in time considered structure. We can consider it as the initial
determines from the condition distribution function in some initial cross-sectiaer Q).
t-To/2<t,(z t, Ty, Po)<t+ Ty/2. (11) In this case, the problem of correct description re-lay on
Eq.(5) with (10) and with the motion equations?he_ detgrmirjation of the.integration regions over the fly-
represent the system of equations that descritdtime in this cross-sectio@(t,z) (i - section number)
nonstationary dynamics of electron beam acceleration i current integrals of each section. In general case it do
slow-wave structure. But this system is still difficult fornot simplify the task, but in the case of linacs such
simulation, so we have made some addition@pproach may be useful. Indeed, in multisectional linacs
assumptions. The the most important one is suchthe main role plays particles that are “trapped” by
amplitude of accelerating wave has a small variatiodccelerating wave and the beam consists of a series of
during the particle fight time through the interactiorshort bunches, except the initial stage of acceleration.
region. Each bunch moves in such way that it remains be
This assumption gives possibility to simplify the“trapped” and be in synchronism with the accelerating
procedure of calculating the integral (10), but it lay outvave despite a small particle movement inside the bunch.
restrictions on the time characteristics of the processlgs signified that the phase shift relative the accelerating
wave do not exceett So, if we know the phase velocity

= JdtJdToJd Py f(ty Tg Po) €XP(inw of )x
G(t.2)

XErs(nwg, Ty ) Vi Vo 1 V)
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of the accelerating structures, we can determine the flyith Bon =1 and L=4.4 m. The dependencies of the

out time of each bunch. from theth sectlop vy|th the  ean bunch energy (we inject 32 “particles” in each RF-
accuracy of one period of  RF-oscillation andgyerind) on the time for the various moments of beginning
consequently, the fly-in time in ther()-th section. Then e iniection of current pulse into the second section are
the mtegrauon_ region for thé-th section under our ghown on Fig.1 (injection current=i0.8 A, current at the
assumptions will be: s : exit of the first section_J=0.65 A). Under simulation we
t=To/2=Ty; <ty <t+Ty/2-Tg; took into account the variations of amplitudes and phases
of RF-signals at the section entrances. The dependencies
of the mean bunch energy on the time for the first six

the phase velocity of the accelerating wave. As the val€ctions under optimum time shifts between RF and beam

of the mean fliaht timeT.. = L /(B-. o of the i-th pulses are shov_vn on Fig.2 (injgction curreOL5 A,
o ighttimeTy,; = Ly / (B ). .I current at the exit of the first sectiqH0.4 A).
section is constant, we can make the time shift on the

value of T7;, so that the integration region in each 4 CONCLUSIONS

i-1
where the mean flight tim&@}, = 3 T, . is defined by
T4

section will be defined by Eq.(12). Developed code is happened to be useful for
The described above method can be also usedworking out different problems. We are planning to
the case of quasi-constant impedance or even constamtlude in it the radial movement of particles and

amplitude sections. Coulomb interactions for more strict description of the
initial part of the acceleration process.
3 SIMULATIONS This work was supported by the STCU contract

On the basis of this method we developed numericAl 285.
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Using this program we have made a simulation of
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Fig.2. Mean bunch energy vs. time
The studied scheme included a prebuncher, an
injection section I(=3 m) with variable phase velocity
and a train of constant impedance acceleration sections
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