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Abstract
 For simulation of  transient  beam dynamics in the

accelerating systems we developed a code that is based on
simultaneous solution of a wave equation and particle
motion equations.  If the processes under consideration
are slow, there is a great simplification in the procedure
of  calculating   of current integral which  describes the
current loading. For applying this approach to
multisectional  accelerators  we developed a procedure of
calculating   of such current integrals for each
accelerating section with consecutive injection of
particles from the previous section into the following one.

1 INTRODUCTION
The acceleration of intense bunches in slow-wave

structures has some features that have to be take into
account under studying the dynamics of electron beams.
One of the main effects  is a beam loading. It includes
changing  of the characteristics of the accelerating wave
under presence of bunched electron beam. Another
problem is an excitation of higher order passbands1, in
particular  one that lead to BBU (see, for example, [1-3]).
Beam loading effects, especially transient, play an
important role in the high current accelerators, so many
efforts were and are made for developing the methods
that could describe these effects properly.  The most
frequently used method is based on the equivalent circuit
approach. This method gives possibility to obtain many
useful transient characteristics, but in many cases the
results are very approximate.  The more general  method
is based on the solving (numerically or analytically) a
nonhomogeneous wave equation. There are many
approaches that can be used for simplifying the procedure
of obtaining the transient characteristics. One of them can
be used in that case when the transient process may be
considered as slow one as compare with the fast
oscillation of electromagnetic field [1,2,4,5]. In this paper
we present our results of developing a mathematical
model that was used  for simulation of transient processes
in multisectional accelerator.

2 ORIGINAL EQUATIONS
Let’s consider a mathematical model that  can be

used for describing  of the transient beam loading effects.
Electromagnetic field which is excited  in slow-wave

                                      
1 At present,  these effects are often called as Wake Field
Effects

structure by  electron beam and external RF-source can
be founded from the general theory of waveguide
excitation [6]:
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signal of external source and current have a narrow
frequency spectrum, it is natural to suppose that the
Fourier transform of the electromagnetic field in the
structure will be nonzero near frequencies that are
multiple the working frequency ω ω ω0 0( )= n  and can be
represented in the form:
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that have a slow variation, ∆ << ω0- frequency interval in
which Fω is nonzero. If we take into account only zero
expansion in a small parameter ∆ / ω0, except of the
wave number ( ( ) ( ) / )h h n dh ds s sω ω ω= +0 ∆ω , and
neglect a quasistatic fields, we obtain:
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where v dh dg s n s n o, , / ( / )= =1 ω ω ω  - a group velocity of the

s-th eigen wave. Summation in (4) is taken on over all
types of waves that propagate at frequencies ω ω= n 0.
Field attenuation  can be taken into account by adding
terms ± ±α s n s nC, ,  to the left-hand side of Eq.(5).

For obtaining the system of equations that describe an
acceleration process with a current influence we ought to
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connect 
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be found from kinetic equation
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Solving Eq.(6) by the characteristic method, we find the
expression for a current:
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where t r pl l l, ,
r r

⊥  are the solutions of the motion equations.   

Determination of a slow-varying  amplitude 
r

j n  by
applying Fourier transformation  to  Eq.(7) is a difficult
procedure, so it is often used some averaging  operators
that give possibility to find this value with definite
accuracy.  One of them is:
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Substituting into (8) the Fourier expansion of the
current, we obtain

M j d
n

n
j i n tn

r r

=
−

−
∫ − =

−∞

∞
ω

π ω ω ω

π ω ω ω
ω ωω

sin[ ( ) / ]

( ) /
exp[ ( ) ]0 0

0 0
0

= +
−

−
∑ − +

−

≠

r

r

j
n k i

d j

d t
i n k tn

n k
k

k n

( )

( )
exp[ ( ) ] ....

1

0
0ω

ω  (9)

It is follows from  (9) that  in the case of slow processes
(d j dt j/ << ω0 ) applying of  the averaging operator to
function gives the value of its slow-varying amplitude.
Taking this into account, we can write the right side of
Eq.(5) in the such form:
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where the integration region G t z( , ) over the fly-in time
determines from the condition

t T t z t r p t Tl l− < < +⊥0 0 0 02 2/ ( , , , ) / .
r r

   (11)
Eq.(5) with (10) and with the motion equations

represent the system of equations that describe
nonstationary dynamics of electron beam acceleration in
slow-wave structure. But this system is still difficult for
simulation, so we have made some additional
assumptions. The the most important one is such -
amplitude of accelerating wave has a small variation
during the particle fight time through the interaction
region.

This assumption   gives possibility to simplify the
procedure of calculating the integral (10), but it lay out
restrictions on the time characteristics of the processes

under consideration - they must be slow not only in
comparison with the oscillations on the working
frequency, but also with the relaxation time that is
determined  by the particle flight time through  the
interaction region. Detail analyze shows that this
assumption restrict the frequency width of signals - it
must be less than 50  MHz. Similar restrictions (even
more rigid owing to the presence of couplers) flow out
from the dispersive   properties of slow-wave structures
because their first passband  has width of the order 100-
200 MHz.

 Simplification of  the procedure of calculating of
the  integral in the right-hand part of Eq.(5) connects with
circumstance that the integration region G(t,z), which is
determined by Eq. (11), can be found in an explicit form.
Indeed, under these conditions the particle fly-in time
t t zl ( , )0  into the point with coordinate z is approximately
periodic function t0, so many-connected region G t z( , )
can be  replaced on the single-connected one:

t T t t T− < < +0 0 02 2/ /               (12)
Under this, calculations of the motion equations of
particles which flied into structure at  moments that are
determined by Eq.(12) can be conducted with a field
amplitude  taken at time t.

In multisectional accelerators we have several
structures. Each section has its own RF-source. All
sources are synchronized, but there may be staggering the
timing of the klystron pulses with respect to the
beginning of  the current pulse. The described above
method, in principle, can be applied for each accelerating
section. For doing that we have to know the function
f t r p0 0 0 0( , , )

r r

⊥  at the entrance of the considered  section,
that is, we must know a solution of kinetic equation (6)
for previous sections. This demand returns us in the initial
state and this approach can not simplify the task.

For using the described above method in the case
of multisectional accelerators, we note that in general
case there is no necessity to understand under
f t r p0 0 0 0( , , )

r r

⊥  in Eq.(10) (and in all subsequent
formulas) the distribution function at the entrance of
considered  structure. We can consider it as the initial
distribution function in some initial cross-section (z= 0).
In this case, the problem of correct description re-lay on
the determination of the integration regions over the fly-
in time in this cross-section G t zi ( , )   (i - section number)
in current integrals of each section. In general case it do
not simplify the task, but in the case of linacs such
approach may be useful. Indeed, in multisectional linacs
the main role plays particles that are “trapped” by
accelerating wave and the beam consists of  a series of
short bunches, except the initial stage of acceleration.
Each bunch moves in such way that it remains be
“trapped” and be in synchronism with the accelerating
wave despite a small particle movement inside the bunch.
It is signified that the phase shift relative the accelerating
wave do not exceed π. So, if we know the phase velocity
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of the accelerating structures, we can determine the fly-
out time of each bunch from the i-th section with the
accuracy of one period of  RF-oscillation and,
consequently, the fly-in time in the (i+1)-th section. Then
the integration region for the i-th section under our
assumptions will be:

t T T t t T Td i d i− − < < + −0 0 02 2/ /, ,
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the  phase velocity of the accelerating wave. As the value

of the mean flight  time T L cd i i ph
i

, / ( )= β  of the i-th

section is constant, we can make the time shift on the
value of Td i,

Σ , so that  the integration region in each

section will be defined by Eq.(12).
 The described above method can be also used in

the case of quasi-constant impedance or even constant
amplitude sections.

3 SIMULATIONS
On the basis of this method we developed numerical

code for simulation the transient beam loading processes
in electron linacs. This code permit to simulate the
transient beam dynamics consecutively in each section
that is very suitable under study of the influence of a
staggering the timing of klystron pulses on the energy
spread.

Fig.1. Mean bunch energy vs. time
Using  this program we have made a simulation of

the beam dynamics in the initial part of the Kharkov 2-
GeV accelerator in the high current regime.

Fig.2. Mean bunch energy vs. time
The studied scheme included a prebuncher, an

injection section (L=3 m) with variable phase velocity
and  a train of constant impedance acceleration sections

with β ph = 1 and L=4.4 m. The dependencies of  the

mean bunch energy (we inject 32 “particles” in each RF-
period) on the time for the various moments of beginning
the injection of current pulse into the second section are
shown on Fig.1 (injection current Iin=0.8 A, current at the
exit of the first section Iout=0.65 A). Under simulation we
took into account the variations of amplitudes and phases
of  RF-signals at the section entrances. The dependencies
of  the mean bunch energy on the time for the first six
sections under optimum time shifts between RF and beam
pulses are shown on Fig.2 (injection current Iin=0.5 A,
current at the exit of the first section Iout=0.4 A).

4 CONCLUSIONS
Developed code is happened to be useful for

working out different problems. We are planning to
include in it the radial movement of particles and
Coulomb interactions for more strict description of the
initial part of the acceleration process.
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