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Abstract distribution f: df /ds = 0. A fictitious beam transport
In a uniform focusing beam transport system, an im‘init%hannel n which .the external focusm_g forces act on.t.he
i ) .o Peam particles uniformly along the lattice can be classified
variety of self-consistent phase space density distributions . : ;
oo as a scleronomic mechanical system. Under these circum-
can be constructed. If these distributions are rms-matcheﬁ o - S .
S X . , stances, the equilibrium condition f@ris simply given by
to a periodic focusing channel, their self-consistent behay-~" """ . )
o : a vanishing explicit time dependency:
ior is preserved if
. . of
1. both channels are equivalent in terms of their tunes, fis stationarye= - =0. @)
ith no explicit time dependency within the single parti-
cle HamiltonianH, the particle’s constant total energy is
represented byi:
This result is verified by 5|m_ulat|ons; assuming high cur- H(z,2',y,y') = %mcz/@z7 (a:’2 + yIZ) + Ve (z,y) -
rent beam transport cases with = 60° zero current tune )

ando = 15° depressed tune. In the case of an interruptederein v, stands for the effective potential given by the

solenoidal transport channel, all changes of the rms emity,,, of the assumed quadratic external focusing potential
tance are purely oscillating (non-growing). For the moduz,q the space charge potential:
lation of the matched beam envelope in this particular sim-

ulation, we obtain relative emittance fluctuation amplitudes;Vest (z,y) = $me* 5%y (kiz® + kJy?) + %Vsc(fﬂ;y) :
of less than 1.00025. v

2. the periodic lattice parameters are chosen to avoid t
occurrence of structure resonances.

Because of Liouville’s theorem, the equilibrium condition
(1) is equivalent to a vanishing Poisson brackeét,(f] =
1 INTRODUCTION 0). This condition is fulfilled iff is a function of the energy
The question on whether strictly emittance conserving selfd:
consistent beam transport through periodic focusing lat- f=f(H). 3)

tices is possible is still open[1]. Of course, this is an issug other words, is stationary if the Isohamiltonians are
for long distance beam transport. Furthermore, analyticglirfaces of constant particle probability density. This state
and numerical studies that calculate the time evolution of@n be achieved for any phase space density fungtion

deviationd f from an equilibrium distributiorf depend on which means that an infinite variety of stationary phase
the existence of these equilibrium states. space density functions exists.

Up to now, only the unphysical K-V distribution[2] is
known to strictly conserve the beam’s rms emittance with 3 PER|IODIC FOCUSING CHANNELS
self-consistent space charge in non-continuous focusing
channels. For all other phase space distributions represeNN@en-continuous focusing systems are characterized by the
ing the beam, the evolution of the beam envelope withifct that the focusing elements maintaining the transverse
the periodic focusing lattice is inevitably accompanied bjpeam extend are spatially separated by intermediate drift
a related variation of the rms emittance if the space charg@aces. Under these conditions, no such thing as a “station-
effects are not negligible. The study of emittance conser@y phase space density” exists and Eq. (1) no longer ap-
ing beam transport thus means to identify conditions und@fies. The question under which conditions the beam qual-
which these emittance variations areriodically oscillat- ity is sustained thus appears in a more general form. For
ing. periodic focusing channels we must ask whether strjmly
riodic solutions for the beam states exist. A possible way
2 CONTINUOUS CHANNELS to answer this question is based on the idea to relate the
particle motion within periodic and continuous focusing
In this article, we restrict ourselves to unbunched, monasystems by a canonical transformation. This transforma-
energetic beams that propagate through linear focusitign must map the Hamiltonian of the continuous focusing
channels. As usual, the “trace space” notation is used, witthannel onto the appropriate Hamiltonian for the periodic
the beam path lengthinstead of the time as the indepen-channel. If we then express the Hamiltonian for the con-
dent variable. If we furthermore exclude effects that origitinuous focusing channel — which represents the particle
nate in the actual charge granularity, i.e. if we use a contirenergies as constants of motion — in terms of the new vari-
uous description of the beam'’s self-fields, Liouville’s theoables, we obtain the constants of motion that exist within
rem applies for the 4-dimensional transverse phase spabe periodic focusing system.
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4 RELATING CONTINUOUS AND This Hamiltonian (6) exactly describes a K-V beam within

PERIODIC FOCUSING CHANNELS a non-continuous focusing channel — with the quadratic ef-
fective potential now being explicitly-dependent:
4.1 K-V Beams

As a special case of Eqg. (3), the K-V phase space densﬂ)‘//eff
function[2] is defined by the property that all beam parti
cles possess the same single particle enéfgy Mathe-
matically, this property can be expressed in terms of-a
function™:

T
= tmc® By (K2 (s)z” + ki(S)y2)+$Vsc(w,y;S) :

Here, k2(s) and k2(s) represent the external focusing
. forces that act on the beam as functions.offrom Eq. (2)
we observe immediately thdt is a constant of motion for
each particle propagating within a matched K-V beam in

f(H) o< 0(H = Ho) - a continuous focusing channel:
It turns out that exactly this density function is associated

KV _ 2 2
with strictly linear self-fields. Together with the linear fo- I = Beai + 7215 - (7)

cusing forces, the e_nt|re smgle_ particle begm dynamics 3f€is easily shown by inserting (4) and (5) into (7) that this
thus governed by linear equations of motion. The assoGiyantity expressed in the particle coordinates pertaining to
ated Hamiltonian (2) then contains a space charge potentgh non-continuous focusing system becomes:

Vie(x, y) that is a strictly quadratic function of the spatial ~

coordinates: andy. Under these special conditions, the Y = Bo(s) T + 20, (s) T%; + 7.(5) 2, . (8)

mapping transformation that relates the beam dynamics gh (8) is a conserved quantity for all particles within a

continuous and non-continuous focusing channels is al%gv beam. It is readily identified as the “single particle
linear. In order to obtain a more transparent formUIatiO'Emittance”

this transformation is split into two steps. The intermediate We remark that the strictly isomorphic behavior of the

Eartlclekcc()jogdmatt_?; aftse_r tr;e {'rSt Itlransfotrtmatlt(?]n ;step W%article motion within K-V beams between continuous and
© marked by a ide. similarly, at quantities that appe on-continuous focusing channels follows from the equiva-

?fter t?e sefcondt{step W”Ibbe rq?rkgd bytg bar.t ;I_'he f'r%nce of the time-dependent and the time-independent har-
Inear transtormation can be written in matrix notation as ., ;. oscillators[4, 5]. It explains the success of the so-

T; cos U, (s) —fsin¥,(s) T; called “smooth approximation”[6]. As we observe, these
= types of channels are not only approximately but exactly
x Byt sin ¥, (s) cos ¥, (s) z! equivalent within the K-V model.
4

with 8, = 77! = const.,a, = 0 the Courant-Snyder[3] 4.2 non-K-V Beams
functions given for a matched beam with self-consistent

space charge forces within the constant focusing chann
and¥,(s) defined as the difference of the phase advanc
between both systems as a function of the positiaiong
the beam lines

e now want to generalize the transformation theory out-
Q’ed in the previous subsection in order to cover all sta-
tionary phase space density functions conforming to (3).
For non-K-V beams, the space charge potential functions
. are no longer purely quadratic, which means that the par-
U, (5) = Go(s) — 0u(s) = 7dz _575% ticle equat|0n§ of mgtlon are no longer Imgar. Therefore,
so Be(2) B we cannot write the integral of these equations in a closed

form as given by the solution matrix (4), which repre-
sents the shifting transformation in the linear case. We are

all beam particles by an axial distanég(s) = B, P.(s) i X . ,
within the continuous focusing channel. The second canoHlus forced to r_estrlct oursel\_/e_s n g_enerallglng the shift-
Ing transformation (4) to an infinitesimal axial step. We

ical transformation — the “matching transformation” — is

then applied to the beam at equal phase advance rathertlpgljieb_y.cor.relate'the beams within both system only over
at equal longitudinal position as: an infinitesimal distancé’,, (s) along the lattice. As a con-

sequence, we cannot expect anymore to obtain a conserved
T Be/Ba(5) 0 i guantity that applies for finite steps. Rather, the invariant
= appears as a sum of infinitesimal quantities, i.e. as a differ-
# G (5)/\/BeBols)  \/Bals)/Be / ential equation.
(5) The canonical transformation that moves the particles an
We note that the total transformation defined by Eqgs. (4hfinitesimal axial step is generated by the Hamiltonian (2)
and (5) is just a special case of a more general mappiitgelf. The coordinates of the new system are obtained by:
theory developed for alternating-gradient systems[3]. The
Hamiltonian (2) canonically transformed via (4) and (5) is

obtained as with 64(s) = [B./B.(s) — 1] 6s andk? defined as

H(z,7',5,9) = gmc* By (&% + §7) + qVen (7,53 5) - 4 By(@,30) — EXV(@,5)
me? 323 z; '

(6) Ky = 077

The first transformation can be interpreted aghdting of

5]

Kl

@i =B — 0l (s) &, &l =7 +06l(s) K2 & (9)

T
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In this equationE, — EXV denotes the difference of the periodic solenoid channel, 6,=60°, 6=15°, water bag distr.

actual space charge field to the linear field function of an 1.0014 o P pr—
equivalent K-V beam. It is easily verified that (9) is the 1.0012 perriJodic quadrupole channel -
infinitesimal limit of (4) if the underlying phase space den- 1.001 t
sity function is of the K-V type. We insert (9) and (5) sub- 1.0008 |
sequently into the time-independent Hamiltonian (2). AfterS,  1.0006 |
summing over allV particles of the beam, this “invariant” < 1.0004 Hi
O
reads “ 10002 |
de2(s) dg; (s) 2 s K L
L —d(W-WKY) =0 \
65 T 5 86) TmaE N Y ) 09008
(10) 0.9996 ' ' '
- _ . 0 20 40 60 80 100
Here, £,(s) and&,(s) denote thes-dependent rms emit- Calls

tances in the;, z’- andy, y’-phase space planes within the

non-continuous focusing system. The space charge poten- _ , \uti ithi
tial terms of all particles sum up to yield the field eneFgy Figure 2: Long term transverse emittance evolution within

of the actual beamiV — WXV thus provides us with the periodic focusing channels for an initial “water bag” phase

excesdield energy the actual beam possesseaddition ~SPace density profile with, = 60° ando = 15°.
to the equivalent K-V beam. Eg. (10) has been obtained
earlier by Wangler et. al.[7] in an alternative derivation. channel simulation, we observe a non-saturating growth
of the rms emittance. This behavior can be attributed to
5 SIMULATION RESULTS non-Liouvillean temperature balancing effects[8] caused
) ) by the charge granularity. This effect occurs even more pro-
The results of the previous sections can be used 10 €5 nced in computer simulations because of the enhanced

plam the results of computer simulations of charged pab'ranularity associated with the macro-particle concept.
ticle beams. If we advance a K-V beam through a peri-

odic solenoidal focusing lattice, we observe in Fig. 1 that

its rms emittance is indeed a conserved quantity — in agree- 6 CONCLUSIONS

ment with Eq. (8). For non-K-V phase space distributionsh method to minimize emittance growth effects within

Eq. (10) states that the emittance varies with the moduleam transport periodic channels can be sketched by a sim-

tion of the beam envelopes. This statement is confirmgsle “cookbook recipe”. For a given periodic focusing chan-

by the dashed line in Fig. 1, which shows the evolutiomel producing a zero current tumg, and a given beam

of the rms emittance of an initial “water bag” distribu-characterized by its emittance and current, we generate a

tion. To lowest order, the emittance oscillates with theelf-consistent distribution with a specific form ¢t H)

period of the focusing lattice. Nevertheless, higher ordegith the same emittance and current for the equivalent con-

oscillation modes are also present. As the long term sininuous focusing channel, i.e. a channel that produces the
same zero current phase advaageover the length that

periodic solenoid channel, 0,=60", 0=15 corresponds to the focusing period of the periodic chan-

1.00025 KV disribation nel. We then match this phase space distribution according

10002 /% water bag distribution - 4 to (5) to the given periodic lattice. If we avoid a regime

100015 SR 7 /1 where structure resonances exist, we thus obtain a “quasi
_ 10001 stationary” beam behavior in the periodic channel.
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