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Abstract

In a uniform focusing beam transport system, an infinite
variety of self-consistent phase space density distributions
can be constructed. If these distributions are rms-matched
to a periodic focusing channel, their self-consistent behav-
ior is preserved if

1. both channels are equivalent in terms of their tunes,

2. the periodic lattice parameters are chosen to avoid the
occurrence of structure resonances.

This result is verified by simulations assuming high cur-
rent beam transport cases with�0 = 60Æ zero current tune
and� = 15Æ depressed tune. In the case of an interrupted
solenoidal transport channel, all changes of the rms emit-
tance are purely oscillating (non-growing). For the modu-
lation of the matched beam envelope in this particular sim-
ulation, we obtain relative emittance fluctuation amplitudes
of less than 1.00025.

1 INTRODUCTION

The question on whether strictly emittance conserving self-
consistent beam transport through periodic focusing lat-
tices is possible is still open[1]. Of course, this is an issue
for long distance beam transport. Furthermore, analytical
and numerical studies that calculate the time evolution of a
deviationÆf from an equilibrium distributionf depend on
the existence of these equilibrium states.

Up to now, only the unphysical K-V distribution[2] is
known to strictly conserve the beam’s rms emittance with
self-consistent space charge in non-continuous focusing
channels. For all other phase space distributions represent-
ing the beam, the evolution of the beam envelope within
the periodic focusing lattice is inevitably accompanied by
a related variation of the rms emittance if the space charge
effects are not negligible. The study of emittance conserv-
ing beam transport thus means to identify conditions under
which these emittance variations areperiodicallyoscillat-
ing.

2 CONTINUOUS CHANNELS

In this article, we restrict ourselves to unbunched, mono-
energetic beams that propagate through linear focusing
channels. As usual, the “trace space” notation is used, with
the beam path lengths instead of the time as the indepen-
dent variable. If we furthermore exclude effects that origi-
nate in the actual charge granularity, i.e. if we use a contin-
uous description of the beam’s self-fields, Liouville’s theo-
rem applies for the 4-dimensional transverse phase space

distribution f : df=ds = 0. A fictitious beam transport
channel in which the external focusing forces act on the
beam particles uniformly along the lattice can be classified
as a scleronomic mechanical system. Under these circum-
stances, the equilibrium condition forf is simply given by
a vanishing explicit time dependency:

f is stationary()
@f

@s
= 0 : (1)

With no explicit time dependency within the single parti-
cle HamiltonianH , the particle’s constant total energy is
represented byH :

H(x; x0; y; y0) = 1

2
mc2�2


�
x02 + y02

�
+ qVe�(x; y) :

(2)
HereinVe� stands for the effective potential given by the
sum of the assumed quadratic external focusing potential
and the space charge potential:

qVe�(x; y) =
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Vsc(x; y) :

Because of Liouville’s theorem, the equilibrium condition
(1) is equivalent to a vanishing Poisson bracket ([H; f ] =
0). This condition is fulfilled iff is a function of the energy
H :

f = f(H) : (3)

In other words,f is stationary if the Isohamiltonians are
surfaces of constant particle probability density. This state
can be achieved for any phase space density functionf ,
which means that an infinite variety of stationary phase
space density functions exists.

3 PERIODIC FOCUSING CHANNELS

Non-continuous focusing systems are characterized by the
fact that the focusing elements maintaining the transverse
beam extend are spatially separated by intermediate drift
spaces. Under these conditions, no such thing as a “station-
ary phase space density” exists and Eq. (1) no longer ap-
plies. The question under which conditions the beam qual-
ity is sustained thus appears in a more general form. For
periodic focusing channels we must ask whether strictlype-
riodic solutions for the beam states exist. A possible way
to answer this question is based on the idea to relate the
particle motion within periodic and continuous focusing
systems by a canonical transformation. This transforma-
tion must map the Hamiltonian of the continuous focusing
channel onto the appropriate Hamiltonian for the periodic
channel. If we then express the Hamiltonian for the con-
tinuous focusing channel – which represents the particle
energies as constants of motion – in terms of the new vari-
ables, we obtain the constants of motion that exist within
the periodic focusing system.
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4 RELATING CONTINUOUS AND
PERIODIC FOCUSING CHANNELS

4.1 K-V Beams

As a special case of Eq. (3), the K-V phase space density
function[2] is defined by the property that all beam parti-
cles possess the same single particle energyH0. Mathe-
matically, this property can be expressed in terms of a “Æ-
function”:

f(H) / Æ(H �H0) :

It turns out that exactly this density function is associated
with strictly linear self-fields. Together with the linear fo-
cusing forces, the entire single particle beam dynamics are
thus governed by linear equations of motion. The associ-
ated Hamiltonian (2) then contains a space charge potential
Vsc(x; y) that is a strictly quadratic function of the spatial
coordinatesx andy. Under these special conditions, the
mapping transformation that relates the beam dynamics in
continuous and non-continuous focusing channels is also
linear. In order to obtain a more transparent formulation,
this transformation is split into two steps. The intermediate
particle coordinates after the first transformation step will
be marked by a tilde. Similarly, all quantities that appear
after the second step will be marked by a bar. The first
linear transformation can be written in matrix notation as0
@xi

x0i

1
A =

0
@ cos	x(s) ��x sin	x(s)

��1x sin	x(s) cos	x(s)

1
A
0
@ ~xi

~x0i

1
A
(4)

with �x � 
�1x = const:; �x � 0 the Courant-Snyder[3]
functions given for a matched beam with self-consistent
space charge forces within the constant focusing channel,
and	x(s) defined as the difference of the phase advances
between both systems as a function of the positions along
the beam lines

	x(s) = ��x(s)� �x(s) =

Z s

s0

dz
��x(z)

�

s� s0

�x
:

The first transformation can be interpreted as ashiftingof
all beam particles by an axial distance`x(s) = �x	x(s)
within the continuous focusing channel. The second canon-
ical transformation – the “matching transformation” – is
then applied to the beam at equal phase advance rather than
at equal longitudinal positions as:0
@ ~xi

~x0i

1
A =

0
@

q
�x=��x(s) 0

��x(s)=
q
�x ��x(s)

q
��x(s)=�x

1
A
0
@ �xi

�x0i

1
A
(5)

We note that the total transformation defined by Eqs. (4)
and (5) is just a special case of a more general mapping
theory developed for alternating-gradient systems[3]. The
Hamiltonian (2) canonically transformed via (4) and (5) is
obtained as

�H(�x; �x0; �y; �y0) = 1

2
mc2�2


�
�x02 + �y02

�
+ q �Ve�(�x; �y; s) :

(6)

This Hamiltonian (6) exactly describes a K-V beam within
a non-continuous focusing channel – with the quadratic ef-
fective potential now being explicitlys-dependent:

q �Ve� = 1

2
mc2�2


�
�k2x(s)�x

2 + �k2y(s)�y
2
�
+

q


2
Vsc(�x; �y; s) :

Here, �k2x(s) and �k2y(s) represent the external focusing
forces that act on the beam as functions ofs. From Eq. (2)
we observe immediately thatIi is a constant of motion for
each particlei propagating within a matched K-V beam in
a continuous focusing channel:

IKVi = �x x
02

i + 
x x
2

i : (7)

It is easily shown by inserting (4) and (5) into (7) that this
quantity expressed in the particle coordinates pertaining to
the non-continuous focusing system becomes:

IKVi = ��x(s) �x
02

i + 2��x(s) �xi�x
0

i + �
x(s) �x
2

i : (8)

Eq. (8) is a conserved quantity for all particles within a
K-V beam. It is readily identified as the “single particle
emittance”.

We remark that the strictly isomorphic behavior of the
particle motion within K-V beams between continuous and
non-continuous focusing channels follows from the equiva-
lence of the time-dependent and the time-independent har-
monic oscillators[4, 5]. It explains the success of the so-
called “smooth approximation”[6]. As we observe, these
types of channels are not only approximately but exactly
equivalent within the K-V model.

4.2 non-K-V Beams

We now want to generalize the transformation theory out-
lined in the previous subsection in order to cover all sta-
tionary phase space density functions conforming to (3).
For non-K-V beams, the space charge potential functions
are no longer purely quadratic, which means that the par-
ticle equations of motion are no longer linear. Therefore,
we cannot write the integral of these equations in a closed
form as given by the solution matrix (4), which repre-
sents the shifting transformation in the linear case. We are
thus forced to restrict ourselves in generalizing the shift-
ing transformation (4) to an infinitesimal axial step. We
hereby correlate the beams within both system only over
an infinitesimal distanceÆ`x(s) along the lattice. As a con-
sequence, we cannot expect anymore to obtain a conserved
quantity that applies for finite steps. Rather, the invariant
appears as a sum of infinitesimal quantities, i.e. as a differ-
ential equation.

The canonical transformation that moves the particles an
infinitesimal axial step is generated by the Hamiltonian (2)
itself. The coordinates of the new system are obtained by:

xi = ~xi � Æ`x(s) ~x0i ; x0i = ~x0i + Æ`x(s) �
2

x ~xi (9)

with Æ`(s) = [�x=��x(s)� 1] Æs and�2x defined as

�2x = ��2x �

q

mc2�2
3
Ex(~xi; ~yi)�EKV

x (~xi; ~yi)

~xi
:

1131



In this equation,Ex � EKV
x

denotes the difference of the
actual space charge field to the linear field function of an
equivalent K-V beam. It is easily verified that (9) is the
infinitesimal limit of (4) if the underlying phase space den-
sity function is of the K-V type. We insert (9) and (5) sub-
sequently into the time-independent Hamiltonian (2). After
summing over allN particles of the beam, this “invariant”
reads

d�"2
x
(s)

�"x(s) ��x(s)
+

d�"2
y
(s)

�"y(s) ��y(s)
+

2

mc2�2
3N
d( �W� �WKV) = 0

(10)
Here, �"x(s) and �"y(s) denote thes-dependent rms emit-
tances in thex; x0- andy; y0-phase space planes within the
non-continuous focusing system. The space charge poten-
tial terms of all particles sum up to yield the field energy�W
of the actual beam.�W �

�WKV thus provides us with the
excessfield energy the actual beam possesses inaddition
to the equivalent K-V beam. Eq. (10) has been obtained
earlier by Wangler et. al.[7] in an alternative derivation.

5 SIMULATION RESULTS

The results of the previous sections can be used to ex-
plain the results of computer simulations of charged par-
ticle beams. If we advance a K-V beam through a peri-
odic solenoidal focusing lattice, we observe in Fig. 1 that
its rms emittance is indeed a conserved quantity – in agree-
ment with Eq. (8). For non-K-V phase space distributions,
Eq. (10) states that the emittance varies with the modula-
tion of the beam envelopes. This statement is confirmed
by the dashed line in Fig. 1, which shows the evolution
of the rms emittance of an initial “water bag” distribu-
tion. To lowest order, the emittance oscillates with the
period of the focusing lattice. Nevertheless, higher order
oscillation modes are also present. As the long term sim-
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Figure 1: Transverse emittance functions within a periodic
solenoid channel for K-V and “water bag” phase space den-
sity profiles with�0 = 60Æ and� = 15Æ.

ulations displayed in Fig. 2 show, the emittance fluctua-
tions do not lead to an overall emittance growth – at least
for the periodic solenoid case. In the periodic quadrupole
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Figure 2: Long term transverse emittance evolution within
periodic focusing channels for an initial “water bag” phase
space density profile with�0 = 60Æ and� = 15Æ.

channel simulation, we observe a non-saturating growth
of the rms emittance. This behavior can be attributed to
non-Liouvillean temperature balancing effects[8] caused
by the charge granularity. This effect occurs even more pro-
nounced in computer simulations because of the enhanced
granularity associated with the macro-particle concept.

6 CONCLUSIONS

A method to minimize emittance growth effects within
beam transport periodic channels can be sketched by a sim-
ple “cookbook recipe”. For a given periodic focusing chan-
nel producing a zero current tune�0, and a given beam
characterized by its emittance and current, we generate a
self-consistent distribution with a specific form off(H)

with the same emittance and current for the equivalent con-
tinuous focusing channel, i.e. a channel that produces the
same zero current phase advance�0 over the length that
corresponds to the focusing period of the periodic chan-
nel. We then match this phase space distribution according
to (5) to the given periodic lattice. If we avoid a regime
where structure resonances exist, we thus obtain a “quasi
stationary” beam behavior in the periodic channel.
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