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Abstract

Logarithm–like perturbation of the transverse potential oc-
curs if the amplitude of betatron oscillations of a beam par-
ticle exceeds the beam (or the ion core for electron storage
rings) radius. This situation takes place in storage rings
with intense circulating beams for multiturn injecting par-
ticles, for the particles producing a halo, and for a vast part
of beam electrons if electrostatic ion clearing electrodes ap-
plied. The closed analytical expression for the response of
betatron tunes on the amplitude of oscillation is presented.
Also transverse couple resonances driven by the perturba-
tion are estimated. It is shown that the perturbation causes
nonlinear coupling of the transverse degrees of freedom.
Recommendations on choose a proper working point are
made.

1 INTRODUCTION

Some modes of operation of storage rings with intense
beams involve perturbation of the transverse focusing by
logarithm-like potential. These cases are:

• multiple injection, especially at low energy as in
the compact synchrotron light factories and Compton
sources;
• operation of a storage ring with ion clearing by elec-

trostatic electrodes.

In these cases amplitudes of transverse oscillations of
some particles (the injecting ones in the first case and pe-
ripherical — in the second) sufficiantly exceed transverse
dimensions of the source of perturbative electric field, e.g.,
the ion core [1] or the stored beam.

2 MODEL

The following model is considered. Parabolic focusing
potential in which beam particles are oscillating, are per-
turbed by the potential of a uniformly charged rod placed
in the axis of a round conductive chamber. This rod repre-
sents the space charge of the beam or the ion core.

Suppose density distribution possesses the form:

ρ(r) = n(r)e = en0 [H(r) −H(r − a)] (1)

whereH(r) is the Heaviside step function,e — electron
charge,n0 — density of the beam or the ion core,a —
beam (core) radius.

Potential functionΦ of this system with the natural bor-
der conditionsΦ′(r = 0) = 0 andΦ(b) = 0 (b is the pipe
radius) has a form:

Φ(r) =
Ne

4πε0

{
1 + ln

b2

a2
−H(r − a)

(
1 + ln

r2

a2

)

−
r2

a2
[H(r) −H(r − a)]

}
. (2)

HereN = πa2n is the longitudinal charged density of
the rod;ε0 — permittivity of vacuum.

The potential function (2) has its extreme value at the
beam axisr = 0:

max |Φ(r)| = |Φ(0)| =
N |e|

4πε0

{
1 + ln

b2

a2

}
, (3)

whereas field strength reaches its maximal value at the
beam edge:

max |Φ′(r)| = |Φ′(a)| =
N |e|

2πε0a
(4)

The potential functionΦ(r) is depicted in Fig.1.

� � � � � ��

�

�

�

�

�

�

�
&KDPEHU�UDGLXV%HDP�UDGLXV

Φ

U���D

Figure 1: Repulsive potential of the uniformly charged
beam in a round chamber.

As is seen from this plot and from expression (2), The
potential function has parabolic form within the rod and the
logarithmic one — beyond it. This potential would cause
the linear shift of the betatron numberQ for oscillations
which amplitudes do not exceed the rod radius and the non-
linear response on frequency for the larger amplitudes.
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3 PERTURBATION OF THE BETATRON
NUMBERS

Common procedure of getting amplitude response of the
betatron frequency is as follows. Let start from the unper-
turbed Hamilton function of betatron motion of the form
[2]:

U0(Ix, Iz , ϕx, ϕz;ϑ) = IxQx0 + IzQz0 (5)

with Iy related to averaged over the ring circumference
transverse coordinates as

y =

√
2Iy
Qy
cos (Qyϑ) , (6)

wherey = (x, z) is a transverse coordinate;ϑ, the az-
imuthal angle coordinate.

Perturbation of Hamiltonian (5) by electric field is

U = U0 +U1 = U0 +
R2e

m0c2
√
γ2 − 1

Φ (7)

Taking into accountr2 = x2 + z2 and substituting (6)
into (2) and afterwards to (7), we get the perturbed Hamil-
tonian asU = U(I,Q, ϑ).

To the first approximation in perturbation from (7) we
get:

Qx(Ix, Iy = 0) =

〈
∂U

∂Ix

〉
(8)

where angle brackets show averaging over the ‘fast’ angle
Qyϑ.

Thus, electrostatic potential (2) causes amplitude depen-
dence of the betatron number as:

Qx(Ix, Iy = 0) = Qx0 +

e

|e|

Nr0R
2

Qx0a2
√
γ2 − 1

F

(
2Ix
Qx0a2

)
, (9)

F(y) ≡ 1 +
2H(y − 1)

π

(
1

y
− 1

)
arccos

1
√
y
.

Herer0 is the classical radius of a beam particle;γ, the
relativistic factor;R, the average machine radius.

The functionF(y) containing theQ–dependence upon
the amplitude is plotted in Fig.2.

The defined functionF(y) amplitude has the continuous
first derivative at the rod radius,y = 1:

dF

dy
= −

2

π
(y − 1)3/2 +O(y − 1)5/2.

As it could be seen from the Fig. 2, theQ–shift is con-
stant within the rod, then the betatron frequency decreases
with increasing of the amplitude.

4 TRANSVERSE RESONANCES

As it is well known (see, e.g., [2]), developing of a reso-
nance requires meeting of the following conditions:

• the working point being close to the resonant line,
mQx + nQz + p = δ � 1 (m,n, p, integers)
• the corresponding perturbation force with proper az-

imuthal Fourier component presenting in the ring or-
bit.

In other words, the resonance must have the stop band,
and the working pointQx, Qz)must be within it.

The space charge force of the rod moves og the work-
ing pointQx, Qz, so it can reach the stop band of a natu-
ral resonance. Moreover, the space charge itself can cause
the resonant perturbation [3]. The cpace charge resonances
are similar to the beam crossing resonances being stud-
ied intensively. The resonances due to the space charge
forces are not so complicated for investigation because of
the coasting nature of the beam. As it has been shown in
[3], the ion core drives the nonlinear difference resonances

2(mQx − nQz) = δ � 1.

These resonances capture the peripheral beam particles.
The ‘transverse energy’ of these particles is the constant
of motion:

E⊥ = IxQ
2
x + IzQ

2
z = const (10)

It leads to occurence of the halo around the beam and can
cause the ‘resonant’ increase in the beam losses when the
halo tails reach the aperture of the ring. These resonances
may be harmful for a machine with the low-energy multiple
injection, where the injected beam with a large amplitude
experiences the nonlinear forces due to the ions confined
by the circulating beam or due to the dense beam itself.
Especially it concerns the rings withQz < Qx. Increase in
a value of the relationQx/Qz will lead to enlarging of the
halo.

� � � � � ��
���

���

���

���

���

���

���

)�\�

\

Figure 2: Q–Dependence on the squared relative ampli-
tude.
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