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Abstract 2 HARMONIC POTENTIALS

The scalar and vector potentials of magnetic multipole dén cylindrical coordinatesr, ¢, z), (2) is given by:

vices are investigated. Special attention is paid to the ) ) )

fringe field region. Pseudo differential operators induced a_“ l% ia_“ 6_“ -0 (6)

by Bessel functions are used to obtain the various multipole or2 ror  r2dp*  0z?

coefficients of the potential. The fringe fields are fitted Usgjnce we use cylindrical coordinates we can expand
ing a finite element basis; the coefficients of the best fit ag(r, o, z) into a Fourier series:

directly obtained from field measurements at the surface

=& u= Z (@m(r, z) cos(m) + b (7, 2) sin(me)).

m=0

1 INTRODUCTION o , o _
. _ ‘Having inserted this expansion into (6), we find that the
From Maxwell's equations for the static electromagnetigoefficients of thep-independent term and the terms with

field, we find that, for a magnetic fieldt in a region with-  cos(m¢) andsin(me) must vanish independently. This
out free charges or currents, there exist a scalar potentialyie|ds:

and a vector potential, satisfying:

- . &ay  1dag a\°
gradu = B = curl 4, ) a2 T T\as) W= 0,
Au_,: I @ 82ay,  10am a\2 m?
curlcurl A = 0. 3 912 + o + 9.) 2 |0m= 0,
The vector potentiall will be chosen such thativ A = 0. 2 16b AN 2
In this case, we havA A = 0. a—;“ —a—m ((a—> - —2> by =0
We apply these equations to the magnetic field inside a ! roor * !

magnetic multipole device which has thexis as its cen- | these equations, any coefficient, or b,, will be con-
tral axis. Our region of interest is, in cilindrical coordi-  gidered to be a function of only, while » is merely a pa-
nates, given by : 0 < 7 < R, -1 < ¢ <7, =00 < rameter. ThenZ can be seen as a linear operator, and the

z < oo, with boundaryl” : 7 = R. Here,R > 0is a con-  formal solutions to these equations are given by:
venient maximal radius of the multipole device, e.g. the

aperture radius. _ . ao(rz) = Jg(rﬁ)Ao(z),
The potential problem is then given by: 0z
0
A’MZO, .TEG, am(r,z) = JM(T&)Am(Z)a m:1727"'
4) )
uw(R,p,2) = Ur(yp,2), z € T. b(r,2) = Jm(r&)Bm(z), m=12,...
In order to have a unique solution to this problem, we havehere J,,, denotes the Bessel function of the first kind of
to impose the additional conditions: orderm, andA,, andB,, are to be determined from the
boundary conditions. The general solution idr, ¢, z)
|u(r, ¢, 2)| is bounded on G, reads:
lim Vu(r,¢,2) =0, r <R, o0 9
lzl:oo ®) U= Z Jm(Ta)(Am cos(mp) + B sin(mep)). (7)
/ |u(r, @, 2)|dz < 0o, r < R. m=0

These expressions become meaningful if we take their
In practical cases, these conditions will always be satisfiefpurier transforms with respect to
which guarantees that the solution to (4) is unique.

L:zm(r, w) = "Iy, (wr)fim (w),
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be used when determining a harmonic vector potential for By expanding the functiong,, into powers ofr/ iz, one
B = grad u. . . can expand the coefficients, andb,,, into powers of/R.
Using (1), we can determine a vector potentiaior B.  For example:

We choosed such thatliv A = 0, which implies thatd is

harmonic. A possible solution is given by _ r\mt2
N , am(r,z) = ZO: mi(2) (R) ,
A, = Jma1(r—=—)(Bm cos(mp) — A, sin(myp)), z
2 P B eosme) = Ansnne = [ e = 000
> 8 . [es} m—+21
A, = Im+1(r=)(Am cos(mp) + B, sin(my)), _ 1 / (wR)
¢ mX::o 0z gmi(2) Wm+Dix Jy  In(@R) cos(wz)dw.
A, = Z Jm(ra%)(_Bm cos(me) + Ap, sin(me)). This will be useful for deriving particle trajectory equations

for a beam guiding element that are accurate up to a certain

) o ) ) order inr/R. The coefficientv,o(z) can also be used to
This solution is not unique; the gradient of any harmonig; {he multipole strengtt-2=a,, )(0, 2)
arm Ym » <)

scalar-valued function can be added in order to yield an- |, general, we write fok > m — 1:
other valid solution. -

Br g An() = [ gh(r = OUnalQldc

3 INTRODUCING BOUNDARY

CONDITIONS PR
wheregy, is given by:

Consider the boundary conditiar{ R, ¢, z) = Ug(y, 2). .
The function (or distribution)/r can be expanded into a k _1 LI (Wr) j—miw:

) . g (1, 2) = " T e dw.
Fourier series: 7 Jo Im(wR)

S : This allows us to calculate the components&)and their
U = Unm Wi . > -
R, 7) mz::o( & cos(mep) + rsin(me)) derivatives from the boundary conditionsrat R. In fact,

any quantity related to the magnetic field can be calculated,
Inserting general solution (7) into the boundary conditioff the right basic function is used.

yields the (weak) equation In the case that not the potential, but a compone of
9 e.g.B,, is known atr = R, we find:
am(R,z) = Jm(R&)Am(z) = Unr(z), 5

“ R
Jr—Amz:/ —fnr,z— B,, dC.
while a similar result holds fob,,(R,z). Taking the 3 32) ) —oo m? ( $)Brma(C)de

Fourier transform of this equation yields I
g y whereB,,,-(¢) cos(m) denotes th&m-pole contribution

. Uper(w) to B, atr = R. If B, or B are known, appropriate basic
Ap(w) = IR (8)  functions can also be derived.

Equation (8) determines the coefficients, and B,,,, and 4 FITTING THE MULTIPOLE FIELD
therefore the potentiad, uniquely. For example, the coef-

ficientsa,, (r, z) are given by In practice, we obtain approximationsléf, g or its deriva-
tives by interpolating a discrete set of measurements. Since
I, . : . O . .
am(r,2) = (71 (wr) F) Unn(2). piecewise constant or piecewise linear mterp_ola‘uops are
I, (wR) often employed, the special casedBfr being piecewise

) L . . _constant or linear will be considered here. First, assume
After expanding the Fourier integrals in this expressiony; s piecewise constant. Then there are paNs ;)
one eventually finds: suchthaty],, = >, X\ié(z — z;). Then, after integration,

i) = [ gmlriz = VRS (@) B 2402 = SN e )
— 00 z - m 7 1)

where the basic functioq,,(r, z) is given by N
whereGE (r,z) = [7__ gk (r,{)dC. Iif Upg is supposed to

_ 1 [ Iy(wr) be piecewise linear, thdi” , = >, \;6(z — z;), in which
Im(r2) = T /0 I, (wR) cos(wz)dw. case we have
In fact, g, (1, 2) is the solution in the case th&l,,r(z) = J 9 A _ pWels .
8(z). This will be used in the next section. e(r az) m(2) XZ: (12 = 23),
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whereG* (r,z) = [7.. G¥.(r,¢)d¢. Aswas shown above, because of the integration ¢, co) that has to be carried
related quantities can easily be derived by replacing theut. Fortunately, the basic functions need to be calculated
functionsG,,, and@,,, by functions related to these quanti-only once.
ties, while retaining the pairs\;, z;).

At this point we shall show how to determine the various
multipole contributions to a magnetic field from the values
of B, atr = R. Atr = R, the B,-componentis given by:

B.(R,p,2) = ) (Up,pcos(mp) + Wy, gsin(me)) . T

m=0 By 4

AssumeB. is known at the point§R, ¢;, z;). ThenU]

is the Fourier coefficient ofos(me), andB; = U], r(z;)
is obtained from:

1 ™
B =2 / B.(R, ¢, 2;) cos(mgp)dyp

T™J_%

Choosing a piecewise constant approximatiortfQr, (z),  Figure 1: Comparison of the measured and calculatgd

we find Uy, p(2) = 3(Biy1 — B)é(z — z), SO as afunction of for various values of:. The dots repre-
Jk(r52)Am(2) is approximated by: sent the measurements, the curves the calculated field.
0] -
Ti(ro-)Am(2) = > (Bis1 = BI)Gim(r,2 — 21).

! 6 CONCLUSIONS

SinceGim (r, z) is aknown function/ (r ) Am(2) canbe - The magnetic field inside a magnetic multipole, and its har-
approximated directly from the measurements. Elaborafgonic scalar and vector potentials, have been explored in
calculations on the measurements are not necessary.  the ared) < r < R and—oo < z < co. The various multi-

It should be noted that, in order to determine - pole contributions to these quantities have been fitted using
pole contribution, one needs measurements performedfgliy measurements at the boundary R and shifted ba-

2n different anglesp;. sic functions. The same set of measurements and shiftings
From (9), we find that,,, depends linearly o/n.r.  can be used to fit many field-related quantities.

This allows us to calculate the effect of errorslip, g on The developed procedure is independent of the exact

the calculation ot,,,. It turns out, that form of the boundary conditions and can be used to fit the

field of one device or various consecutive devices.

The procedure works for any order multipole contribu-
) tion, but will be the most useful for lower order multipole
whereda,,, and Uy, denote the errors in,, andUmr  contributions, since higher order multipole contributions
respectively. This justifies the use of the given approximayre more difficult to obtain from measurements their effect

rym
sup |0am (7, 2)| < (=) sup|éU,.r(2)|,
supldam(r,2)| < (3;) " 5up 6Un ()]

tions. on particle trajectories will often be small.
Recently, M. Veenturini and A. Dragt presented an article
5 EXPERIMENTAL TEST OF THE at CPO 5, in which they also derive multipole coefficients

PRESENTED THEORY from boundary conditions [2]. This article presents a some-

. . . what different view on the subject.
The theory developed in the previous sections has been

verified using actual field measurements for a magnetic
guadrupole, performed by G. Brooijmans [1]. Using a 7 REFERENCES

normal-orientated quadrupole, he measured the compongnt G.J.L.M. Brooijmans, Design of and measurements on the

B, for y = 0 and numerous values af and z. Using EUTERPE dipoles and quadrupoles, TUE internal report,
the measurements for the outermost valueofve calcu- VDF/NK 88-15 (1988).

IathBy for the other values of a'_"d compared the calcu- [2] M. Venturini and A. Dragt, Computation of exact transfer
lations to the measurements. SinBg = B, for z > 0 maps from magnetic field data, presented at the 5th Charged
andB, = —By for y < 0, we used the basic function Particle Conference (1998), to be published in Nucl. Instr.

Go(r,z) = BGy(r, z) for the fitting procedure. The re-  and Meth.
sults of the calculations and the measurements are shown
in figure 1.
The differences between the calculations and measure-
ments result mainly from errors in the numerical calcula-
tion of the basic functions. This calculation is complicated
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