THE CORBA IDL INTERFACE FOR ACCELERATOR CONTROL

M. Plesko
J. Stefan Institute, Ljubljana, Slovenia, e-mail: mark.plesko@jijs.si

Abstract

It is a long practice that hardware designs and solutions
are shared among accelerators, because well defined
standardized interfaces exist. In order to be able to share
software among different accelerator control systems, a
standard library or application programmer’s interface
should be adopted. A proposal for such a standard
description of accelerator devices is presented in this
paper. It is a language independent collection of
interfaces based on network distributed objects using the
CORBA standard. All common accelerator components
such as power supplies, vacuum, RF, position and current
monitors are defined by means of functions and
parameters. The interface does not replace or compete
with any of the existing accelerator control systems
(EPICS, CDEV, TACO, DOOCS). On the contrary - great
care has been taken to be as compatible as possible to
those systems so that all could use the CORBA interface.

1. INTRODUCTION

The Accelerator CORBA Interface (ACI) [1] defines
controlled devices (e.g. power supply, current monitor,
vacuum pump, etc.) as network objects that are remotely
accessible from any computer through the established
client-server paradigm. The underlying communication
mechanism is based on the Common Object Request
Broker Architecture (CORBA), the state-of-the-art
standard for remote objects[2]. The devices are described
according to CORBA with the Interface Definition
Language (IDL), which presents a language-independent
way of defining object interfaces.

The ACI is meant to be a standardized interface so that
applications and pieces of control systems can be hooked
to it from either side. The ACI does not replace existing
control system architectures and frameworks.

The ACI attempts to build a model of devices that are
commonly used in all accelerators. It is the largest
common denominator that can be found among different
types of accelerator facilities. As such it should enable
portability of control software and ultimately reduce the
dispersed efforts at various laboratories where the same
software is written all over and over.

The ACI is but a definition of device interfaces with the
use of IDL, not a definition of an API. An API with more
powerful or sophisticated features can be built atop of the
IDL interfaces, or even replace the CORBA protocol with
a proprietary scheme. However, the IDL interfaces have
been defined such that it is possible to perform all
necessary control actions just by direct CORBA
connections to the ORB that exports the IDL device
interfaces. The idea behind this approach is that it is not
necessary for the client to load any special API library —
any CORBA ORB can find devices on the net and

communicate with them.

2. DESIGN GOALS

The design goals of ACI are:

1685

Rely on pure CORBA only: don’t be language or
system specific; don’t assume extra functionality in
an API library.
Enforce strong type checking wherever possible.
Illegal commands should be discovered already
during compile time. Run-time parsing of commands
through constructs like send(“command”) must be
avoided. Generic applications can use the
introspection capabilities of CORBA (e.g. Interface
Repository, Dynamic Interface Invocation, etc.)
instead.
Exploit the object paradigm: the object itself is
responsible to provide all data that is relevant to it.
Avoid therefore direct access to database servers;
leave this to the implementation.
Don’t try to define a generic interface for any
possible control system. Specialize on the definition
of accelerator objects with the functionality that is
common to all accelerators.
Define object interfaces; don’t prescribe their
implementation and don’t provide client-side
functionality. The ACI is merely a hook to the
underlying control system.
Don’t allow the client to manipulate control system
behavior. Assume rather that reasonable default
values are provided by the system managers through
control system configuration tools.
Use well-proven concepts from existing accelerator
control systems.
Base data transfer on asynchronous calls assuming
that all client and server host operating systems are
multithread capable as is necessary for GUI-based
applications. Keep synchronous calls just for
compatibility with legacy systems.
Encourage site-specific additions through interface
inheritance instead of providing generic bypasses to
strong type checking. However, all interfaces that are
defined in the ACI must be implemented at a given
site, because client applications from other sources
rely on them. Clients written on site can still use the
added functionality without penalty.
A technical issue inspired by Java: pass all
parameters to methods by value; in IDL this means
that all parameters are declared as “in”. In order to
save space, the “in” keyword is omitted in all
definitions in this text.
Great care has been taken to be as close as possible to



existing control system frameworks like EPICS, CDEV,
TACO, DOOCS, etc. Many concepts were actually taken
directly from one or several of those frameworks. A few

examples:

CDEV devices are objects that are a collection
of properties

EPICS each property has a set of standard
characteristics

CDEV groups are used to merge several
commands into one message

TACO a server manages the interface for one
type of devices

DOOCS | the object is keeping short term history
data

all synchronous and asynchronous get/set
calls are supported

3. CONCEPTS OF ACI

This section defines all objects and concepts that are
present in the ACI interface definitions (see Ref. [1] for a
complete description of the interfaces). The naming has
been adopted according to the convention accepted at the
SOSH98 software sharing workshop[3].

3.1. Devices

A device is a CORBA object that corresponds to the
model of a physical device, e.g. power supply, vacuum
pump, current monitor, etc. A device server is a CORBA
ORB that implements one specific device interface and
exports several devices that are distinguished only by
their name. Although one device server always exports
only devices with the same interface, the inverse is not
true. It is possible that several different device servers
export the same interface. A typical example is an
accelerator complex with an injector and a storage ring.
The device server for the injector exports the power
supplies of the injector, while the device server exports
the power supplies of the storage ring. Both types of
power supplies have the same IDL

The device is the basic entity of the ACI, because it is
the most natural concept for modeling physical entities in
an accelerator. Commands that are executed on a device,
like on, off or reset are correspond to methods of the
device. Each device has a number of device properties
that are controlled, e.g. electric current, status, position,
etc.

Device properties, which are also defined as objects in
the ACI, are referred to as IDL attributes of the device.
Properties are distinguished by type (pattern = unsigned
integer, double, etc.) and by being read-only (RO) or
read-write (RW) objects. Each such “property object” has
specific characteristics, e.g. the value, the minimum, its
description, units, etc. The methods of a property allow to
retrieve or modify these characteristics: get(), set(),
minVal(), etc.

Finally, a device has resources, which are
implementation dependent static key-value pairs, like

EEINA3 CEIN3

“position”-“sector 3”, “interface”-“analog 16 bits”, etc.
Resources are not used by the ACI and by generic
applications. However, they are provided as a generic
way to retrieve information that is not covered by the ACI
from a database.

An example of a definition of a device is:
interface PowerSupply : Device {

// properties
readonly attribute RWdouble current;
readonly attribute ROdouble readback;
readonly attribute ROpattern status;
// commands
void on(CBvoid);
void off(CBvoid);
void reset(CBvoid);
}

The interface of the power supply extends the generic
object Device (which has a name, metohds to acces
resources and other general properties and methods) and
contains 3 properties: current, readback and status. The
power supply can execute 3 commands: on, off and reset.

3.2. Data Types

Each value read from the control system and each
completion of a command has an associated error type,
error code and a time-stamp. ACI defines a basic set of
error types and codes for errors and alarms. Given that
CDEYV, EPICS, TACO and DOOCS have their own error
codes, it might be possible to either translate common
errors to the code list of ACI, or to just pass the error code
and indicate by type which system the code comes from.
But that would make error handling of clients more
complicated. The time should be ideally represented by
the CORBA time service through the UTO interface
(which is not the POSIX time). As the time service is not
yet part of all ORBs, we use the CDEV definiton of time
which is a double of seconds elapsed since January 1%,
1970.

Several values of the same type are stored as a
sequence: longSeq, doubleSeq, etc. Such sequences are
already provided by the IDL syntax. as
typedef longSeq sequence long ;

Sequences are used when multiple devices are
controlled with one method call or when a history of
values of one property is requested. The use of sequences
for individual values is possible but strongly discouraged,
as properties are supposed to be simple objects related to
one 1/O channel.

3.3. Callbacks, Monitors and Alarms

Most of the device commands and property methods are
executed asynchronously by the remote object. The
results of the operations are communicated to the client
by means of a callback. A callback is an object interface
that must be implemented by the client, so that it can be
invoked by the remote object. During this process, the
remote object functions as a client and the client performs
as a server.

1686



A client will often need to get the value of a property
on a regular basis, either at given time intervals or
whenever the value changes. A regular callback with the
updated value is invoked by means of a monitor. The
client creates a remote monitor on the server with a single
call, where a reference to a callback is passed as a
parameter. Then the monitor on the server invokes the
callback whenever the requested conditions are met. An
important type of monitors are alarms: A client registers a
callback which is triggered every time an alarm condition
appears, changes, or disappears.

3.4. Groups and Structures

Devices are logically arranged into groups. Groups are

container objects that contain zero or more devices from

the same device server, i.e. have the same interface

definition. A group can not span several device servers. A

device can be a member of more than one group. E.g. the

power supply of horizontal corrector #3 is member of the
following groups: powerSuppliesGroup, and
corrHorGroup.

The concept of groups is inspired by the CDEV group
mechanism, although it is not quite the same. CDEV uses
groups to group a series of arbitrary commands that
should be transferred to servers in one network message.
This very generic feature can not be defined through a
remote interface, which the ACI is. However, the most
common usage of groups is when the same device
property is read or written to a group of equal devices or
the same command is execute on them. That can be easily
defined through an interface like ACI.

For tasks that span several device servers, groups can
be arranged into structures. A structure is a collection of
groups from different device servers. A typical structure
is a “Storage Ring” or a “Transfer Line”. Structures are
handled by a dedicated CORBA server, which
communicates with the device servers, where the groups
are created. Alternatively, structures can be defined also
on the client within a dedicated API.

Groups and structures are used for two purposes:

1. Devices of the same or different type are pre-
arranged within the IDL into groups and structures,
respectively, such that generic applications know
which devices to use for specific tasks, e.g. orbit
correction, synoptic display, save/restore machine
state, etc.

2. Devices of the same type (same IDL interface) are
arranged by a client into a group to perform the same
action on all members of a group with a single
method invocation, e.g. set the current of all power
supplies.

4. THE IMPLEMENTATION

The concepts of ACI have been checked on a “real
world case” at the ANKA control system [4], which
currently implements all but groups and structures.
Besides conventional use of the ACI, the CORBA
dynamic invocation interface (DII) was used to write a

generic client. Another set of clients were built
graphically in a visual builder with JavaBeans that expose
ACI such that all details of CORBA are hidden. The
complete system proves to be very efficient and
conceptually clean.

S. CONCLUSIONS

The present article models accelerator devices as
distributed objects using the strong typing paradigm at all
levels. This approach provides the application
programmer with powerful compile time checking, thus
eliminating many errors and bugs that would appear at
run-time and would be difficult to track down.

Another advantage of the present concept is that there
is no need for separate API manuals and device manuals,
because the CORBA interface is both the API and the list
of all legal commands for a device.

The ACI is completely independent of any concrete
accelerator implementation. Thus it appears that
accelarator devices defined with ACI or some similar
framework based on IDL and CORBA are the right basis
for sharing high level accelerator applications.

6. ACKNOWLEDGMENTS

The author thanks Bogdan Jeram for many fruitful
discussions and for implementing the presented ideas into
a real control system.

7. REFERENCES

[1] For a complete description of ACI see
http://kgb.ijs.si/Clanki/ACI_draft 3.html
[2] http://www.omg.org/

[3] http://www.sls.psi.ch/SOSH98/

[4] B.Jeram et al., The Control System for the
Accelerator of ANKA, this conference.

1687



