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Abstract

The paper describes the use of genetic algorithms with the
concept of niching for the optimal design of superconduct-
ing magnets for the Large Hadron Collider, LHC at CERN.
The method provides the designer with a number of local
optima which can be further examined with respect to ob-
jectives such as ease of coil winding, sensitivity to manu-
facturing tolerances and local electromagnetic force distri-
bution. A 6 block dipole coil was found to have advantages
compared to the standard 5 block version which was previ-
ously designed using deterministic optimization methods.
Results were proven by a short model magnet recently built
and tested at CERN.

1 INTRODUCTION

The 5-block coil cross-section for the LHC main dipoles
as described in the “Yellow Book” [1] was designed at the
time, using deterministic optimization algorithms. The ad-
vantage of this coil design is a higher average margin (in-
ner and outer layer) for a given amount of superconductor
material. However, as the conductor and coil design has
been subject to a number of changes, e.g. change in ca-
ble dimensions and insulation and a part compensation of
the persistent current multipoles at injection, the 5 block
design had become too inflexible to accommodate further
adjustments if they became necessary at a later stage. This
was due to geometrical constraints, i.e. copper wedges be-
coming too small at the inner edge. Moreover, the perfor-
mance of the model magnets seemed to indicate that the
force distribution in the inner block of the inner layer with
its 4 turns and an adjacent copper wedge of large dimen-
sions is not favourable. Beam simulations have also shown
the dodecapole field component to be a limiting factor for
the machine performance.

The classical method of designing superconducting mag-
nets includes the application of mathematical optimization
techniques based on vector-optimization and deterministic
algorithms. The limitations of deterministic optimization
methods are that the number of conductors in each of the
coil blocks has to be constant, as the optimization of cou-
pled problems of discrete and continuous variables is not
possible with search routines. For the given requirements
and cable dimensions no alternative design with a six block
structure could be found by the standard design procedure.
The aim was therefore to utilize an optimization method
that overcomes the deficiencies of the common determinis-

tic algorithms and to apply it to the main dipole coil for the
LHC.

2 THE OPTIMIZATION PROBLEM

The main objectives of the dipole design are a small content
of unwanted field errors in the main field, low sensitivity of
the field quality to manufacturing errors, easy manufactur-
ing, and possibility to tune the geometry after the pre-series
manufacture of the magnets. Not all of these objectives can
be included into the mathematically formulated objective
function.

The amount of unwanted multipoles is expressed by the
coefficients of the Fourier series expansion of the radial
field component in the aperture where in the assumed sym-
metric case only the oddbn (coefficients of the sine terms)
are to be minimized. However, using goal programming
methods the weight for the components showing different
sensitivity has to be found in an iterative procedure, as the
effects of the components have to be examined using beam
tracking. As the electro-magnetic forces are enormous
(about 4000 kN/m radially) the local force distribution in
the coil collar structure has to be optimized. However,
this requires computations of coupled electro-magnetic me-
chanical problems. Manufacturing considerations include
ease of the coil winding and collaring, i.e. geometrical con-
straints on the pole angle. Setting too many geometrical
constraints, however, results in ill-conditioned optimiza-
tion problems. During manufacturing, systematic errors
occur due to the applied tooling. After the pre-series con-
struction of the magnets the coils have to be repositioned to
compensate for these systematic errors. It will be impossi-
ble to change the topology of the coil which therefore has
to have sufficient flexibility for adjustments.

Therefore an optimization method is required that not
only converges towards a “global” minimizer of the objec-
tive function, which is in our case just a weighted sum of
the Fourier coefficients of the flux density in the aperture
of the magnet (at r=10 mm), but provides the user with a
number of design proposals (local minima) which can then
be examined in more detail.

The design variables for the optimization problem are
the number of turns per coil block, the positioning and in-
clination angles of the blocks, and the current in each turn.
The current has to be included as a design variable in the
optimization in order to guarantee a feasible solution not
exceeding the load-line limit of the superconducting wires,
which depends on the local magnetic field. The magne-
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tization of the iron yoke with an inner radius of 98.5 mm
is calculated by means of a reduced vector potential finite-
element formulation [2] which does not require the mesh-
ing of the coil, as the source terms can easily be calculated
using Biot-Savart’s law. The fact that the coils don’t have
to be meshed is important because the topology of the coil
is changed during the optimization process by omitting and
adding conductors to coil blocks.

3 GENETIC OPTIMIZATION

For the minimization of the resulting objective function ge-
netic algorithms are used [3]. As our problem is mixed
continuous and integer, the different parameters are com-
bined by linear sampling of the floating point parameters
and Gray-encoding of the resulting integers into a binary
string.
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Figure 1: Parameter encoding and decoding

The current in the conductors and the angles of the coil-
blocks were encoded by 5 bits each. The number of turns
of the outer and inner blocks used 4 bit strings each, thus
resulting in “chromosomes” of typically 50 to 60 bits.

Genetic algorithms then proceed by 3 main operators,
selection, crossover and mutation. The selection operator
guarantees convergence to an optimum by keeping the bet-
ter chromosomes and discarding the less fit ones. Using
the standard operation of fairy-wheel selection or simply
retaining the better half of the chromosomes reduces diver-
sity generation by generation thus leading to a single solu-
tion. The applied concept of niching, however, provides the
designer with a set of solutions rather than only one, which
can then be examined in detail. After a new offspring is
generated by one of the three operators, the chromosome
with the smallest hamming-distanceHD =

P
i
ui � vi

(least number of different bits) is located and replaced if its
fitness is worse than that of the offspring.
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Figure 2: Crossover

Crossover is a recombination of bit strings of two chro-
mosomes by swapping the strings at a random point. This
is the major influence directing the search process to good
solutions. Although the crossover point is chosen at ran-
dom, the offspring created by crossover do not cover the
entire search space, as can be seen in Fig. 3.
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Figure 3: Hypercube with transition patterns for single
point crossover of 0010 and 1001

Crossover is therefore not a pure Monte-Carlo process as
is mutation, which avoids preliminary convergence of the
entire population towards a local minimum and improves
solutions close to a minimum at the same time.

A new offspring is generated by crossover with a rate
of 0.8 or mutation with a rate of 0.15. After each applica-
tion of an operator the offspring is evaluated and selected
strings are introduced into the chromosome pool for imme-
diate participation. A population size of 60 chromosomes
is found to be sufficient, which determines also the number
of final solutions.
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Figure 4: Genetic algorithm with niching

4 RESULTS

Two 6-block coil designs and an alternative 5 block solu-
tion were found using genetic algorithms. The two 6 block
solutions were studied in detail and compared to the stan-
dard 5 block coil cross-section as described in the yellow-
book. Table 1 gives the characteristic data for the three de-
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Table 1: Characteristic data for the three designs.

V6-3 V6-1 VY
Turns (coil) 38 40 41
% on LL outer 81.05 84.92 82.5
% on LL inner 86.15 85.64 86.5
PF / MF outer 0.83 0.89 0.87
PF / MF inner 1.03 1.03 1.052
Inom (A) (8.36T) 11879. 11532. 11224.
Bss (T) 9.70 9.76 9.65
L (mH/m) 6.64 7.17 7.47
b3 (pers) -4.11 -3.67 -4.17
b5 (pers) 0.20 0.15 0.21
b7 (pers) -0.021 -0.022 -0.036
b9 (pers) 0.003 0.0035 0.0073
b3 (geo) 1.0 1.41 0.1
b5 (geo) -0.198 -0.1055 -0.19
b7 (geo) 0.0122 0.0255 0.0342
b9 (geo) -0.0087 0.0014 -0.01
b11 (geo) 0.0037 0.0029 0.0088
Pole angle (deg) 70.5 70.99 57.4
Pole size (mm) 7.1 7.43 8.7
Fp (N/m) 16400. 17239. 33877.
�a2 0.637 0.590 0.741
�b2 0.591 0.572 0.796
�a3 0.265 0.242 0.304
�b3 0.239 0.235 0.318

Fp = electro-magnetic force parallel to broad face of cable no. 41
(VY), no. 40 (V6-1), no.38 (V6-3). PF/MF = Peak-field (in the
coil) to main-field (in the aperture) ratio.bn in units of10�4 at a
radius ofr = 10mm. pers = errors due to persistent currents at
injection, geo= geometrical field errors.

signs which were studied in detail. The multipole content
is given in units of10�4 at a radius of10mm.

The V6-1 design has aBss which is about 0.1 T higher
than in the VY version. This is remarkable as it can be
achieved with 1 turn less. The explanation is the reduced
peak-field to main-field ratio in the inner layer. At the same
time the margin in the outer layer blocks is reduced with
respect to the VY version but is still higher than for the
inner layer. Theb11 is considerably reduced. The radial
forces on the two inner turns (turn 39 and 40 for the V6-
1 version) are reduced. The random multipole errors were
calculated using 500 identically distributed random errors
on the block positioning and inclination angles, and their
radial positions, between�0:05 mm. Analysis of the mul-
tipole content of these 500 random magnets yields a normal
distribution function where the mean value and the standard
deviation� can be calculated. As can be seen in Table 1 the
random multipoles are slightly lower for the V6-1 design.

5 CONCLUSION

Genetic algorithms with niching can be applied efficiently
to the design of magnetic devices supplying the designer
with a number of local optima, whereas the more cumber-
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Figure 5: 5-block alternative to the classical 5 block design

0 10 20 30 40 50 60

Figure 6: 6-block (40 turns) design (V6-1)
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Figure 7: 6-block (38 turns) design (V6-3)

some standard procedure would result in a single solution
only. These local optima can then be evaluated in detail.
The method therefore supports the designer’s creativity. A
new dipole coil cross-section was found this way, which
proved advantageous compared to previous designs. The
results have been validated by a model magnet which was
successfully tested in December 1997. It reached 9.2 T at
the first and about 9.5 T at the second quench, well above
the nominal field of 8.4 T [4].
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