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Abstract

A major problem in the design of high intensity proton
linacs is how to avoid particle losses. Losses cause acti-
vation of accelerator components and make unconstrained
maintenance difficult. In a linac, losses occur radially due
to the formation of beam halo. In addition, filamentation of
the particle distribution in the longitudinal phase space can
cause activation problems when injected into a ring.

In recent years, progress has been made inunderstand-
ing halo production due to parametric resonances between
single particles and the oscillating mismatched beam core.
The mismatch of isotropic DC beams is described by 2 well
known eigenmodes. For bunched beams 3 eigenmodes ex-
ist. The frequencies of these modes can be approximately
expressed by the the full and zero current transverse and
longitudinal tunes only. The knowledge of these eigen-
modes allows identification of parametric resonance con-
ditions for bunched beams. Correlations between halo pro-
duction and parametric resonances have been verified by
Monte Carlo simulations for bunched beam transfer lines
and a high current linac.

1 INTRODUCTION

The major problem of the design of high current proton
linacs is the loss of particles at higher energies. Particle
loss leads to activation of accelerator components and re-
duces the flexibility of hands of maintenance. As a rule of
thumb hands on maintenance is possible if the loss is less
than 1 W/m. As losses occur radially only the transverse
motion of particles is considered in, for example, a waste
transmutation linac [1]. If a storage ring or a circular ac-
celerator follows the linac, like for spallation sources, the
longitudinal motion of particles has to be considered too
[2].

We are still in the process of understanding and find-
ing in detail the sources of particle loss and halo dynam-
ics. The beam halo consists of a ’small’ number of parti-
cles which oscillate around the bunch core. In recent years
substantial progress has been achieved by identifying the
parametric resonance conditions as a major source of halo
production of DC beams. In the particle-core model parti-
cles outside the beam experience a nonlinear space charge
force. This results in a single particle tune spread. Para-
metric resonances can occur between single particles tunes
and the frequency of the oscillating mismatched beam core
[3,4,5,6,7,8]. For realistic particle distributions with non-
linear space charge forces particles inside the core have a
tune spread too. This one dimensional model describes the
process of how particles can leave the beam core [9,10,11].

In this presentation the one dimensional parametric res-
onance model is generalized to bunched beams. Due to
the two transverse and the longitudinal bunch dimension 3
eigenmodes exist for the mismatched envelopes.

The paper is organized in the following way. The three
eigenmodes of bunched beams are derived in section 2
and verified numerically in section 3. Correlation between
halo production and parametric resonances are verified by
Monte Carlo simulation for a bunched beam transferline in
section 4 and for a high current linac in section 5.

2 THE THREE ENVELOPE MODES OF
MISMATCHED BUNCHED BEAMS

For the analytical approximation of the eigenfrequencies
(modes) of the mismatched envelopes it is assumed that
the beam is of ellipsoidal shape with uniform charge den-
sity. This results in linear space charge forces. In the rest
frame of the bunch the bunch radii are denoted byax; ay
andaz. If the bunch moves with the velocityv in longitu-
dinal direction then the bunch lengthb in laboratory system
is given byb = az=
, where
 is the relativistic mass factor.
The external forces for focusing and bunching are assumed
to be linear and periodic in the longitudinal directions with
period lengthL. The envelope equations are given by
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Herekxo, kyo andkzo are the external periodic force con-
stants. Kx, Ky andKz are proportional to the elliptical
formfactors [12] and depend on the bunch dimensions too.
I is the bunch current and�t and�z are the transverse and
longitudinal emittances. This system of nonlinear coupled
differential equations exhibits oscillating stable or unstable
solutions. ’Matched’ solutions have the same periodicity as
the external focusing system and are denoted byaxo, ayo
andbo. For studying mismatched solutions it is appropriate
to express the beam radii as a sum of the matched periodic
solution and a mismatch

ax = axo +�ax; ay = ayo +�ay; b = bo +�b:

Assuming small mismatches the equations can be lin-
earized giving three coupled differential equations of Hill’s
type for the mismatches�ax,�ay and�b. Applying now
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smooth approximation it is possible to solve the coupled
envelope equations. One gets three eigenfrequencies, a
pure transversequadrupolar mode

�env;Q = 2�t

and ahigh andlow modewhich couple the transverse and
longitudinal directions

�2env;H = A+B; �2env;L = A� B
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The mismatch modes are expressed by the full and zero
current transverse and longitudinal tunes�t, �to, �l and
�lo. The high and low mode have been investigated already
[13]. The high and low mode correspond in some respect
to the even and odd modes of an unisotropic DC beam. For
isotropic DC beams the well known mode frequencies are
given by

�2env;e = 2�2t + 2�2to;

�2env;o = 3�2t + �2to:

The quadrupolar mode has the same properties as the odd
mode of isotropic DC beams but with lower frequency.

In smooth approximation one gets in the case of the
quadrupolar mode for the corresponding eigensolutions

�ax = ��ay � cos(�env;Q � s=L);�b = 0:

Here only a transverse mismatch is present and it is of op-
posite phase. In case of the high and low mode one has

�ax = �ay = gH=L�b � cos(�env;H=L � s=L)

with the amplitude factors

gH=L =
�2to � �2t

�2
env;H=L

� 2(�2to + �2t )
:

gH is always positive andgL always negative. The high
mode represents a pure ’breathing’ of the ellipsoidal bunch.
For the low mode the bunch breathes in transverse direction
but the oscillation in longitudinal direction is of opposite
phase. Any arbitrary mismatch can be expressed by super-
positions of the three eigensolutions. The analytical formu-
las presented are derived by approximating the derivative of
the formfactorsKx,Ky andKz. This approximation is not
valid for extensively elongated bunches where the mode-
frequencies and the amplitude factors depend on the aspect
ratioaxo=bo andayo=bo [14].

3 NUMERICAL INVESTIGATIONS
WITH LINEAR SPACE CHARGE

FORCES

For periodic external focusing there exist stable and unsta-
ble solutions of the envelope equations. The unstable case
can happen if one of the envelope tunes is near to180o.
Stable and unstable situations have been studied numeri-
cally for a periodic bunched beam transportline. The ge-
ometry of the period is very similar to the first period of
the coupled cavity linac (CCL) of the proposed European
Spallation Source (ESS) [15,16]. Each period consists of
two accelerating (bunching) cavities followed by a doublet
for transverse focusing. The proton energy is 70 MeV and
the beam current 214 mA.

3.1 Stable Case

For the stable case the transverse full current tune was set
to60o per period. The matched radii for all three directions
are shown in Fig. 1. Note that in longitudinal direction
one has a weak focusing system giving an almost constant
bunch length. For a small relative initial mismatch the en-
velope equations have been solved numerically for 20 peri-
ods and compared to the analytical approximation.

As an example two modes are shown in Fig. 2 and Fig.
3. There the relative mismatches�ax=axo, �ay=ayo and
�b=bo are plotted (top, middle, bottom) over 20 periods.
The markers present the numerical solution of the nonlinear
coupled envelope equations. The curves are cosine func-
tions with the envelope tune�env as the only free param-
eter. The envelope tunes are adjusted to fit the numerical
data. The resulting values for the envelope tunes are listed
in Table 1 and compared to the theoretical values calculated
by the formulas given above. Also listed are the tunes for
this example and the two amplitude factors. Fig. 2 shows
the 5% excitation of a quadrupolar mode. The horizontal
and vertical oscillation have opposite phase and no excita-
tion exists in the longitudinal direction. Fig. 3 shows the
excitation of the high mode with 5% radial and 7.5% longi-
tudinal excitation. For the high mode all three amplitudes
are in phase.

Table 1: Parameters of the stable transport line
�t �to �L �lo
60o 87o 72o 90o

�env;Q;the �env;Q;fit �env;H;the �env;H;fit

120o 130o 167o 168o

�env;L;the �env;L;fit gH gL
135o 141o 0:70 �0:94

3.2 Unstable Case

To test the unstable case the transverse tune�t was in-
creased to75o. This gives an analytically calculated en-
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Figure 1: The matched beam radii along one period. T1,
T2 bunching cavities, Q1, Q2 quadrupoles
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Figure 2: Excitation of the quadrupolar mode
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Figure 3: Excitation of the high mode

Table 2: Parameters of the unstable transport line
�t �to �l �lo
75o 103o 69o 90o

�env;H;the �env;H;fit �env;Q;the �env;L;the
188o 192o 150o 141o

velope tune for the high mode�env;H;the of 188o. The
other two mode tunes are less than180o. All tunes are
listed in Table. 2. Because�env;H;the is nearby180o an
unstable behaviour is expected. In Fig. 4 the excitation of
this mode is shown by solving the envelope equations nu-
merically with an initial mismatch of 5% radially and 2.5%
longitudinally. The initial mismatch grows by a factor 10
after 20 periods. The curve corresponds to the function
e�s=L � cos(�env;H;fit � s=L). � is the growth rate and
the fitted number is equal to 0.11 per period. Because of
the nonlinearity of the envelope equations the oscillation
frequency is amplitude dependent. Therefore it cannot be
expected that the simple analytical curve works for larger
mismatches.
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Figure 4: Relative mismatch in y-direction for the high
mode of the unstable case

4 MONTE CARLO SIMULATIONS OF A
STABLE TRANSPORT LINE

It is important to do multiparticle calculations of the
bunched beam transfer line and compare the results with
the model. There is an important difference. Due to phase
space filling the multiparticle simulations have nonlinear
space charge forces included. However the rms quantities
are mainly determined by the linear space charge forces
[17]. Therefore it is expected to see the above discussed
mode excitation in the rms beam radii as long as the rms
emittances are not changing significantly. In Fig. 5 the rms
emittances are shown for the above discussed stable case
with a rms matched 6d waterbag input distribution. The
Monte Carlo simulations are done with 20 000 particles
which interact fully in 3d. The results shown for 80 peri-
ods correspond to 20 plasma wavelengths for the bunched
beam.

As an example in Fig. 6 the excitation of the high mode
is shown. The dots are the values of the rms radii obtained
by multiparticle calculation whereas the the solid line rep-
resents an analytical curve with the same frequency as in
Fig. 3. The initial mismatch of this simulation is 20% radi-
ally and 30% longitudinally. As expected the excitation of
the high mode is clearly visible.

Up to now the study has concentrated on the rms quan-
tities which describe the core part of the bunch. Particles
in the halo are strongly effected by nonlinear space charge
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Figure 5: Rms emittances of the stable transferline
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Figure 6: Excitation of the high mode. Dots are data from
Monte Carlo simulation
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Figure 7: 99.9% total to rms emittance ratio for a matched
(bottom) and a quadrupolar mode excited case (top)
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Figure 8: 99.9% total to rms emittance ratio for a matched
(squares) and a high mode excited case (triangles). Please
note the enlarged scale

forces resulting from the initial distribution. The tunes of
the individual particles are distributed between the full cur-
rent and zero current tune. Due to oscillation of the mis-
matched radii single particles can experience parametric
resonances. Contrary to the one dimensional case differ-
ent single particle tune spreads exist in the radial and lon-
gitudinal direction. Also the three different envelope tunes
complicate the situation. The condition for exciting a para-
metric resonance either radially or longitudinally is given
by

�
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where�env is one of the three envelope tunes of the mis-
matched radii and�p

t;l
the single particle tune.

The low order resonances are the most dangerous ones.
For the radial direction the 1/2 parametric resonance is al-
ways excited by the quadrupolar mode. The high or low
mode can excite a parametric resonance either in the trans-
verse or longitudinal direction. The frequency of the high
mode should be limited below180o in order to avoid an en-
velope instability. As pointed out before a mismatch with
equal amplitudes in radial and longitudinal directions leads
to an excitation of the high and low mode simultaneously.
The parametric resonance model gets more complicated if
the rms emittances are changing. Reasons for emittance
change can be an envelope instability, particle redistribu-
tion under high space charge forces and temperature ex-
change.

Fig. 7 and 8 show the 99.9% total to rms emittance ratio
in x-direction. In Fig. 7 the matched case is compared to
a 20% quadrupolar mode excitation. A substantial increase
of the 99.9% emittance is visible due the 1/2 parametric
resonance excitation. The resonance condition is fulfilled
for 65o radial single particle tune. Particles with such a
tune start close to the core. In Fig. 8 the same emittance
ratio as in Fig. 7 is shown but here comparing the matched
case with a by 20% radially and 30% longitudinally excited
high mode. As predicted no resonance effect can be seen
because radially a single particle tune of84

o is needed to
excite the 1/2 parametric resonance. There are no particles
with such a tune in the distribution.

5 MONTE CARLO SIMULATION OF
THE ESS LINAC

All the results above are for a bunched beam transfer line,
where particle are not accelerated. The conclusions are also
valid for the design of a high current linac. As an example
Monte Carlo results are shown for the 214 mA ESS cou-
pled cavity linac which accelerates the beam from 70 MeV
up to 1.334 GeV. The injection parameters at 70 MeV are
about the same as for the discussed transferline. The in-
put distribution is 6d waterbag. The ratio between full and
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Figure 9: Rms emittances along the ESS linac for the
matched case
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Figure 10: Rms emittances along the ESS linac for the mis-
matched case

zero current tunes is greater than 0.7 both transversely and
longitudinally, all along the linac. The Monte Carlo simu-
lations are done with 50 000 particles.

Fig. 9 shows the normalized rms emittances along the
linac. Fig. 10 shows the rms emittances for a mismatched
case where all three modes are excited simultaneously by
injecting the beam with +20% horizontal, -20% vertical
and -20% longitudinal mismatch. In the radial plane the 1/2
parametric resonance is excited by the quadrupolar mode.
Longitudinally one has a excitation of the 1/2 parametric
resonance by the low mode. As a consequence all three rms
emittances are increased by more than 30%. The 99.9% to
rms emittance ratio are significantly increased transversely
and longitudinally compared to the matched case, see Fig.
11 and Fig. 12.

During the startup of period of high intensity linacs more
than 20% initial mismatch are hard to avoid especially
in the longitudinal plane due to adjustment of the bunch
length. Pariticle loss should be limited for the startup pe-
riod. In space charge dominated linac designs where the
tune depression is below 0.4 chaotic single particle motion
even for 20% initial mismatch have been observed [5,8].
For spallation source linacs with its restrictions on loss free
ring injection a design is required which is insensitive to
transverse and longitudinal mismatch.
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