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Abstract

The understanding of crystalline beams has advanced to
the point where one can now, with reasonable confidence,
undertake an analysis of the luminosity of colliding crys-
talline beams. Such a study is reported here. It is necessary
to observe the criteria, previously stated, for the creation
and stability of crystalline beams. This requires, firstly,
the proper design of a lattice. Secondly, a crystal must
be formed, and this can usually be done at various den-
sities. Thirdly, the crystals in a colliding-beam machine
are brought into collision. We study all of these processes
using the molecular dynamics (MD) method. The work
parallels what was done previously, but the new part is to
study the crystal-crystal interaction in collision. We ini-
tially study the zero-temperature situation. If the beam-
beam force (or equivalent tune shift) is too large then over-
lapping crystals can not be created (rather two spatially
separated crystals are formed). However, if the beam-beam
force is less than but comparable to that of the space-charge
forces between the particles, we find that overlapping crys-
tals can be formed and the beam-beam tune shift can be of
the order of unity. Operating at low but non-zero tempera-
ture can increase the luminosity by several orders of mag-
nitude over that of a usual collider. The construction of
an appropriate lattice, and the development of adequately
strong cooling, although theoretically achievable, is a chal-
lenge in practice.

1 INTRODUCTION

For the last decade there has been interest in, and experi-
mental effort to achieve crystalline beams. The interest, be-
sides being intrinsic for this new state of matter, is primar-
ily due to the possibility of studying the physics of com-
pletely space-charge dominated beams, the possibility of
studying Wigner crystal, and the possibility of using crys-
talline beams to obtain very high luminosity colliders. It is
the later possibility that we study in this work.

The ground state of a crystalline beam was proposed
by Dikanskĭi and Pestrikov[1] based on an experimental
anomaly observed on an electron-cooled proton beam at
NAP-M, and was first studied using the MD method by
Schiffer and co-workers[2]. At the same time, experimen-
tal efforts have succeeded in achieving very low beam tem-
peratures, but not yet a crystalline state[3].
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2 THE GROUND STATE
Particle motion can be described by a Hamiltonian[4]-[7]
in the rest frame(x; y; z; t) of a circulating reference par-
ticle in which the orientation of the axes is rotating so that
the axes are constantly aligned to the radial(x), vertical
(y), and tangential(z) direction. Consider a system of
ions with electric chargeZ0e and atomic massM0 un-
der Coulomb interaction and external fields. Measure di-
mensions in units of the characteristic distance�0 with
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2 are the velocity and energy of
the reference particle, and� is the radius of curvature in
bending regions of magnetic fieldB0. In a bending region
with pure dipole magnetic field, the Hamiltonian is
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the Coulomb potential,Px;y;z are the canonical momenta,
and the summation,j, is over all the other particles and
their image charges[4] in the same beam. In a non-bending
region with longitudinal electric field and non-dipole mag-
netic fields, the Hamiltonian is

Hi =
1

2

�
P 2

x + P 2

y + P 2

z

�
�
n1

2
(x2 � y2)

�n1sxy �
n2�0

6
(x3 � 3xy2) + VCi + Us;

(2)

where the normal quadrupole, skew quadrupole, and sex-
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We have done both analytic and numerical calculations
using the equations derived from these Hamiltonians and
the molecular dynamics (MD) methods. The details of the
numerical methods have been provided in Ref.[4].

We start with a study of the ground state, as previously
reported in Ref. [5]. It has been shown that there are two
necessary conditions for the formation and maintenance of
a crystalline beam. They are as follows:

1. The storage ring must be alternating-gradient (AG) fo-
cusing and the energy of the beam must be less than
the transition energy of the ring; i.e.,
 < 
T .

2. The ring lattice periodicity is at least2
p
2 as high as

the maximum betatron tune.

Condition (1) arises from the criterion of stable kinematic
motion under Coulomb interaction when particles are sub-
ject to bending in a storage ring. Condition (2) arises from
the criterion that there is no linear resonance between the
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phonon modes of the crystalline structure and the machine
lattice periodicity.

Existing storage rings upon which attempts have been
made to obtain crystalline beams do not satisfy the con-
ditions just stated, although with minor modifications they
would. The requisite cooling in order to obtain a crystalline
state is delineated in Ref. [7]. What is required is reason-
ably powerful and preferably “tapered” cooling; i.e., cool-
ing to the same average angular velocity. These require-
ments on a cooling system would seem to be achievable in
practice.

3 BEAM-BEAM MODELLING
Our numerical study of colliding crystals is done using the
MD code SOLID.[4] The newly added element is that now
there are two interacting crystals moving in opposite direc-
tions. The interaction occurs once a period in a very short
time, so it is treated as a lumped kick in momentum. The
kick on particlei can be represented by a Hamiltonian

Hi=
X
j

(1 + �2)
�0

�
q
b2min + b2ij

(3)

whereb2ij = (xi � xj)
2 + (yi � yj)

2 is the square of the
transverse separation andbmin = (1 + �2)r0=(4�

2
2�0)
is the minimum separation in the beam rest frame, and the
summation,j, is over all the particles in the opposite beam.
We find that if the kick is large comparing with that of the
crystalline space charge, then the ground state is two crys-
tals separated in space at the crossing point; i.e. there are
no overlapping (Fig.1d). If, however, the beam-beam ef-
fect is not too large then the two crystals do overlap and
beam-beam nuclear interactions can occur.

A convenient measure of both the beam-beam and the
space-charge forces is given by assuming a uniform charge
distribution within the beam. This is, of course, an under-
estimate of the actual space-charge and beam-beam forces
when the beam is crystallized, since the crystalline beam
has ordered structures (e.g. for Fig. 1a the actual space-
charge force is under-estimated by this tune-shift formula
by about a factor of 4). LetR be the radius of the machine,
��xy be the� values at the crossing point,NB be the number
of crossing per revolution,N0 be the number of ions per
bunch,�0 be the peak number of ions per unit length, and
a be the full transverse radius of the bunch, we have:

��sc =
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�

xy

4��2
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(4)
With these expressions, the ratio of beam-beam force to
space-charge force is independent of the transverse beam
size (or temperature) as the beams are cooled down.

It is necessary, in order to have significant beam-beam
nuclear interactions, to form crystals with many shells.
Unfortunately, crystals with many shells (beyond three or
four) requires excessive computer time. We have, there-
fore, modelled a crystal by representingNMP ions by a
macro particle of chargeNMPZ0 and massNMPM0. Thus
we replace�0 by � = N

1=3
MP �0. That is, of course, not the

same as a many shell crystal withNMP = 1 but it does
replicate some of the phenomena. Numerical studies, al-
beit only with a few shells, indicates minimal sensitivity of
our results to shell number.

4 RESULTS
We first study the formation of crystals with different val-
ues of the beam-beam force in comparison with the space-
charge force. The results are shown in Fig 1. Beam and
machine parameters are listed in Table 1 (�0 = 0:68�m). It
can be seen that crystalline ground states (zero-temperature
state) can be found with any value of beam-beam force. At
the ground states, particles of the two intersecting beams
do not collide at the crossing point. Collision only occurs
at non-zero temperature when the amplitude of the parti-
cle transverse thermal motion is larger than the minimum
transverse separation of the particles of the opposite beam.

We then study the heating rates of the crystals as func-
tions of crystal temperature. The study is done in the ab-
sence of external cooling and, therefore, tells us the amount
of cooling required to form and maintain the crystal. The
normalized crystal temperatureT = Tx + Ty + Tz is de-
fined withTx;y;z the deviation ofPx, Py andPz from their
ground-state values, squared and averaged over particles.
T is related to the conventional beam temperatureTB at
high temperature by

TB �
�2
2M0c

2�2

2kB�2
T = 12:3N

2=3

MPT [K] (5)

with kB the Boltzmann constant. Starting with finite-
temperature states and evaluating the rate at which the
beams absorb energy from the lattice, we present in Fig. 2
the relative increase of temperature per lattice period for
the four cases displayed in Fig. 1. Comparing with the
case of no beam-beam collision (long dash line), cases with
��bb = 0:08 and 0.27 have similar heating rate down to
normalized temperature of about 0.01.

Finally, in Fig 3, we show the values of��sc and��bb
as a function of beam temperature for the last three cases.
These curves show that as the temperature is reduced the

Table 1: Beam and machine parameters.
Quantity Value
Ion species proton
Ring circumference,2�R 251.3[m]
Number of lattice periods per turn 100
Energy (
) 22
Horizontal & vertical tunes,�x, �y 30.99, 30.89
Transition energy,
T 29.4
Dipole bending radius,� 10 [m]
Maximum�x;y 4.1 [m]
Minimum �x;y 0.6 [m]
Average��x;y 2.4 m
RF voltage,V per period 1[MV ]
RF harmonic number,h 105

Synchrotron tune,�s 0.26
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beam becomes smaller and hence there is an increase in
both of these quantities. Most important, however, is the
increase in��bb which shows that a larger value of the
beam-beam effect can be tolerated at low temperatures than
at high temperatures. Of course, in order to have nuclear
luminosity, ions in the two beams must overlap on a scale
much smaller than that which is shown in the figure. Such
overlap does not occur whenT = 0, but will occur at suf-
ficiently high temperature as indicated by the solid lines in
Fig. 3. Operating at temperatures just above these values
increase the luminosity by about two orders of magnitude
above that allowed in normal colliders!

The “bottom line”, then, is that our work suggests (only
“suggests” as a number of possibly important phenomena
are only studied by extrapolation) that combining cooling
with colliding beams is a useful thing to do. Perhaps the
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Figure 1: A series of figures showing the formation of
crystalline ground states with 1000 macro particles ineach
beam. In each case the space charge tune shift��sc =

�3:8 and the beam-beam tune shift��bb = 0; 0:08, 0:27,
and 2.7 (NMP=1, 1, 40, and 40, 000). The crosses cor-
respond to one beam while the circles correspond to the
other.� is the polar angle. The actual temperature is near
T � 10�6.
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Figure 2: The heating rate for the crystals shown in Fig. 1.
Each crystal has 1000 macro particles and��bb = 0; 0:08,
0:27, and 2.7.

gain in beam-beam collision rate, while maintaining beam
stability, can be as much as two orders of magnitude. Fur-
ther study, and especially experimental study, would appear
to be called upon.

The simulation program SOLID was developed by X.-P.
Li and J. Wei. We thank M. Furman for many discussions.
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Figure 3: The beam-beam tune shift��bb and the space-
charge tune shift��sc as functions of temperature. The
solid lines indicate regions where particles of opposite
beams will overlap so thatj��bbj is a proper measure of
luminosity. Structures of cases (b), (c), and (d) of Fig. 1
correspond to the respective curves at aboutT � 10�6.
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