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Abstract

We discuss techniques for Model-Independent Analysis
(MIA) of a beamline using correlation matrices of physi-
cal variables and Singular Value Decomposition (SVD) of
a beamline BPM matrix. The beamline matrix is formed
from BPM readings for a large number of pulses. The
method has been applied to the Linear Accelerator of the
SLAC Linear Collider (SLC).

1 INTRODUCTION

The BPM readings of a beamline are highly correlated. To
exploit this correlation, one can assemble them into a ma-
trix. Without the need of referring to a beamline model, one
can perform operations on this matrix including an SVD to
obtain eigenvalues and two sets of eigenvectors. Most of
the eigenvalues are due to BPM noise and are small. The
number of eigenvalues that are above the noise floor de-
termines the number of changing physical variables which
measurably affect the beam centroid motion. The spatial
eigenvectors and their corresponding temporal eigenvec-
tors form two complete orthogonal bases respectively for
the spatial and the temporal linear space spanned by the un-
derlying physical changes. Techniques for identifying the
physical variables will be described and results from ana-
lyzing the Linear Accelerator of the SLAC Linear Collider
(SLC) will be presented.

2 EXPECTATIONS FOR THE
BEAMLINE MATRIX

The data acquired from BPM readings can be stored in a
matrix B of P rows byM columns, whereM is the total
number of BPM readings on each pulse andP is the to-
tal number of pulses. In other words, thepth row vector
~bp � (b1p; b

2
p; :::b

M
p ) represents the complete set of theM

readings on thepth pulse. TheseM readings are correlated
since there are a finite number of degrees of freedom in the
motion of the beam. Assuming there areD physical vari-
ables that are changing and can affect the beam centroid
motion, one can write
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where~b0 is a constant arising from centroid or BPM offsets,
�vsp is thesth variable value (the difference from a nom-
inal value) on thepth pulse, and~np is the random noise
in each BPM. In addition to the frist derivative terms, the
second derivative terms may play an essential role in beam
centroid motion, such as the change in the betatron motion
as a result of changes in energy. The constant term~b0 is of
no interest. Thus we usually consider
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where<> denotes an average over pulses.
We normalize the physical variable changes, their prod-

ucts and the corresponding derivatives as follows: letting
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and the rms of the derivatives over the BPMs be denoted as
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we define dimensionless temporal unit vectors with ele-
ments given by
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and similarly, we define dimensionless spatial unit vectors
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Eq. 1 can then be re-written as

~̂bp �
~bp� <~b >
p
PM

=

D(D+3)=2X

s=1

qsp�s
~fs +

~npp
PM

: (2)

where we have replaced double indices(r; s) with a new
single index and set�s � �vsrms�

rms
s .

In the matrix form, Eq.(2) becomes

B=
p
PM � [~̂bp] � B̂ = Q�FT +N=

p
PM; (3)

whereQ � [~qs] is a matrix ofP rows byD(D + 3)=2
columns,� is a diagonal matrix of the rms values�s's.
F � [~fs] is a matrix ofM rows byD(D + 3)=2 columns,
andN � [nmp ] is a matrix ofP rows byM columns con-
taining the random BPM noise.

3 MINIMUM-CORRELATED SUBSETS

If a subsetQs of the temporal patterns are known and are
conjectured to be uncorrelated to temporal patterns outside
the subset, then one can obtain the corresponding subsetFs
of the spatial patterns. Defining the temporal correlation
matrix of the subset asCs � QT

s Qs, we obtain

�sF
T
s = C�1s QT

s B̂ + O(�noise=
p
PM): (4)

Note that in Eq. 4, the error due to noise is inversely pro-
portional to the square root of the number of pulses and
the number of BPMs, indicating that collecting data over
more pulses with more BPM readings potentially enhance
the analysis resolution.

4 SINGULAR VALUE DECOMPOSITION
(SVD)

On the other hand, some important variables may be un-
known or not measured at the time of BPM data acquisi-
tion. In this case, one can perform an SVD of the matrixB̂

after removing the known patterns. The SVD equation is
given by

B̂ = U�V T ; (5)

where both U and V are unitary matrices representing
orthogonal temporal patterns and spatial patterns respec-
tively, and� is a diagonal matrix containing the corre-
sponding eigenvalues. The number of eigenvalues above
the noise floor determines the number of significant physi-
cal variables that are changing and affecting the beam cen-
troid motion. The corresponding spatial eigenvectors in
V and the corresponding temporal vectors in U form two
complete orthogonal bases respectively for the spatial and
the temporal linear space spanned by the underlying phys-
ical changes. Eq. 5 resembles Eq. 3. Although they share
the same linear space, each of the eigen-modes in Eq. 5 do
not correspond one-to-one to the physical patterns in Eq. 3.
Indeed, the ultimate goal of MIA is to identify as many of
the physical modes in Eq. 3 as possible with the help of the
SVD analysis.
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Figure 1: Eigenvalue plot

5 EIGENMODES AND NOISE

As an example, some typical results from SVD analysis of
a set of SLAC linac horizontal motion data of 5000 pulses
and 130 BPMs are shown in Figures 1-2. Figure 1 shows
the eigenvalues obtained while Figure 2 shows the 6 eigen-
vectors corresponding to the largest eigenvalues. Except
for small curved tails on the high and low ends, the noise
floor is typically linear and its slop decreasing as1=

p
P .

Without knowing temporal patterns, the magnitude of the
floor obtained from SVD is inversely proportional to

p
M .

Besides those 6 significant eigenvalues, there are addition-
ally about 3 eigenvalues that can be categorized as above
the noise floor and therefore one can conclude that there are
about 9 physical variables that are changing and affecting
the beam centroid motion. The most significant of these
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physical variables are the beam injection position and in-
jection phase which correspond to two degrees of freedom
in betatron motion. As shown by the top two plots in Fig-
ure 2, these two spatial eigenvectors basically represent the
two betatron modes with a little mixture of otherphysical
modes from, for example, jittering of beam bunch length,
beam energy, beam intensity, vertical injection position and
phase, incoming longitudinal phase, etc. due to correlation.
Note that bad BPMs can be identified very easily. Each
of the 5th and the6th plots of Figure 2 clearly shows an
eigenvector with a single outstanding component that cor-
responds to an abnormal BPM. Before further MIA analy-
sis, one should identify the bad BPMs and remove their cor-
responding columns of data. One could also cut the noise
by simply re-assigning the noise floor eigenvalues to 0 in
the diagonal matrix� and then using the right-hand side of
Eq. 5 to get a cleaner beamline BPM matrix. The advantage
of doing so is that one can perform an SVD of a subset of
the beamline BPM matrix (same number of rows but fewer
columns) after cutting the noise to get a moreaccurate sub-
set of eigenvalues and eigenvectors for easier identification
of physical variables.
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Figure 2: Eigenvector plot

6 THE DEGREE-OF-FREEDOM PLOT

Figure 3 shows what we call the degree-of-freedom plot.
This plot is obtained by performing SVDs of the beamline
BPM matrix subsets of increasing number of BPMs. The
eigenvalues for different subsets are connected into curves.
Such systematic SVD analysis can reveal not only the total
number of the degrees of freedom but also the locations
where subsequent new degrees of freedom appear. The
blank strips indicate removed nosiy BPM locations. Differ-
ent from Figure 1, the eigenvalues plotted here are not nor-
malized by the number of BPMs. This enhances the curve
visualability such that the coherent signal curves grow with
the number of BPMs and the slopes of the curves indicate
the local strength of signals. The two largest eigenvalue
curves are the betatron modes. There are also other eigen-
value curves representing additional measurable physical
variables that are yet to be identified.
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Figure 3: Degree-of-Freedom plot

7 SUMMARY

Preliminary studies for Model-Independent Analysis
(MIA) of a beamline using a Singular Value Decomposi-
tion (SVD) was presented. MIA has many advantages in
comparison with other measurement techniques. To name
a few: the resolution of BPMs can be measured directly
and improved by using more beam pulses and BPMs; sys-
tematic BPM errors can be immediately identified and re-
moved; the BPM noise can be mostly cut by performing the
SVD; the primary effects, such as betatron motion, can be
identified and separated from the secondary effects easily.
More detailed discussions will be given in a forthcoming
article.
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