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Abstract

We present a new COD correction method for orbit
feedback, which can exactly fix the beam positions at
selected BPMs and simultaneously correct COD around
the whole ring. This method can realize a single
feedback which has both functions of global and local
feedbacks. A computer simulation of COD correction for
the VSX ring confirms that the new correction method is
very useful for orbit feedback.

1 INTRODUCTION
Photon beam positions or closed orbits in synchrotron

radiation sources are usually stabilized by global and/or
local feedbacks. The global feedback efficiently corrects
COD around the whole ring with the harmonic method,
the least squares method or the eigenvector method,
while the local orbit feedback tightly fix the beam
position at a photon source point by the local orbit bump
method. However, the two feedbacks may interfere with
each other and deteriorate the orbit stability when they
are operated at the same time. We propose a new
correction method, the eigenvector method with
constraints, which can have both functions of global and
local COD corrections. In the paper, the new COD
correction method for orbit feedback is presented and
compared with the ordinary eigenvector method.

2 THEORY

2.1 Ordinary Eigenvector Method

In this sub-section, the eigenvector method is
reviewed.
The measured COD at beam position monitors (BPM),
the kick angle strengths of the correctors and the
response matrix are also denoted by R  and   , θy
respectively.  Here, the numbers of BPMs and M and N,
and R is an MxN matrix.  The norm of ∆  defined by

yR +θ≡∆ ( 1 )

should be zero or as small as possible.

For the betatron functions and phases of i-th BPM
(βi,φi

B) and j-th corrector (βj,φj
C)  the element of the

response matrix Rij is given by
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The norm of ∆  becomes minimum when its
derivatives with respect to ),,2,1( Njj ⋅⋅⋅⋅⋅⋅=θ  are zero.
The kick angle vector θ  is then determined by

0=+θ yRRR TT

 . ( 2 )

Since RRT  is a real symmetric matrix, it can be
decomposed by

TT UURR Λ= , ( 3 )

where the superscript “T” stands for the transposed
matrix or vector.  U and Λ are written as
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where Ui and λi are the i-th eigenvector and
eigenvalue of the matrix RRT , respectively.

From Eqs. (2) and (3), θ  is obtained as

yR+−=θ , ( 5 )

where

TTTT RUURUUR 11)( −−+ Λ=Λ=
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For small eigenvalues, their reciprocals in the matrix
Λ

-1
 is usually replaced with zeros in order to avoid very

large kick angles of correctors and to reduce the error
effects of BPM and corrector.

2.2 New Correction Method

A new COD correction method is the eigenvector
method with constraints. Here, the constraint conditions
may be given by

0=+θ i
T
i zC  

( i=1,……….., L ) , ( 7 )

where L means the number of constraints.
We minimize the norm of ∆  in (1) under the

constraint conditions (7) using Lagrange’s method of
indeterminate multipliers. The function of S is given by
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Putting the derivatives of S with respect to θ  and µi

to zeros, we obtain
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When the reciprocals of small eigenvalues are
replaced with zeros in the same manner as subsection 2.1,
the inverse matrix A

-1
 can be expressed by the n

eigenvectors as follows,
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From the first and second equations in (9), we obtain

yRACPzP TT 111 −−− −=µ ( 11 )

and

zCPAyRACCPAA TT )()( 111111 −−−−−− −+−=θ (12)

where CACP T 1−= .

The condition of Ln ≥ is required for the existence
of the inverse matrix P

-1
.  If zi in Eq.(7) is taken as the

beam position observed at an arbitrarily selected BPM
and C as the corresponding part of the response matrix R,
the beam position can be fixed at zero.  Further, if
BPMs on both sides of a photon source such as insertion
device are selected for constraints, we can keep the beam
position and angle of the source point at zero and
simultaneously correct the COD around the whole ring.

3 RESULTS OF SIMULATION
The VSX project aims at constructing third-

generation synchrotron light sources in the Kashiwa
campus of Tokyo University.  The 2GeV VSX ring is
388m in circumference. 14 insertion devices will be
installed there. 128 BPMs and 112 correctors will be
used for orbit feedback.

A computer simulation for the new COD correction
method has been carried out for the VSX ring. The
constraints adopted here are that the positions at BPMs
on both sides of 14 insertion devices are zero i.e. the
number of the constraints is 28.  Figure 1 shows a
typical COD before correction. Here, we assumed that
the alignment error of quadruple magnet has a gaussian
distribution with σ=5.0x10-5.

Figures 2 and 3 show the rms ratio of CODs before
and after correction. The new method are compared with
the ordinary method in the figures. For the number of
eigenvalues more than 40, the new method has almost
the same rms ratio as the ordinary method.

Figure 4 and 5 shows the ratio of kick angles for the
two methods. The maximum and rms of the kick angles
for the new method are almost equal to those for the
ordinary method.

4 CONCLUSIONS
The new COD correction method was formulated and

a computer simulation was carried out. The results of this
simulation show that the new correction method fully
satisfies constraint conditions and has almost the same
correction performance as the ordinary method. The kick
angle strengths of the correctors are also comparable
with those in the ordinary method.  Since, the global
and local feedbacks are compatible in the new method, it
is most suitable for an orbit feedback system of
synchrotron light sources. The effects of BPM reading
and corrector setting errors are discussed elsewhere.
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Figure 1: A typical COD without correction around the
whole ring for the VSX ring.

Figure 2: Horizontal rms ratio.

Figure 3: Vertical rms ratio.

Figure 4: Ratio of kick angles of horizontal correctors.

Figure 5: Ratio of kick angles of vertical correctors.
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