Characterization of 2.45 GHz ECR Ion Source Bench for Accelerator-Based 14-MeV Neutron Generator

SUDHIRSINH VALA
INSTITUTE FOR PLASMA RESERCH
GANDHINAGAR-GUJARAT, INDIA

Upcoming 14-MeV neutron Facility at IPR

Parameter of 14-MeV Neutron Generator				
Type of Machine	DC Electrostatic Accelerator			
Max Acceleration Voltage	300 kV			
Type of Beams	D ⁺ Ion			
D+ Ion Current	20 mA			
Vacuum Pressure	1 x 10 ⁻⁷ mbar			
Target	Tritium, 140 Ci			
Estimated Neutron Yield	$\sim 1 - 5 \times 10^{12} \text{ n/s}$			

3D view of the 14-MeV neutron Generator

Neutron & Ion Irradiation Laboratory

Neutronics Laboratory Building South - East side view

Neutronics Laboratory Building East - North side view

ECRIS2020 Sudhir 29Sept2020 15:15 Inside view of Neutronic Laboratory

40 keV, Low Energy Beam line

Results of beam optics simulations

Magnet Power supplies for Beam line

340 keV, Medium Energy Beam line

e Command & Control ECRIS2020_Sudhir_29Sep \$\sqrt{9}\sqrt{6}\sqrt{1}5:15

Magnet Power supplies for Beam line 4

2.45 GHz High Current Source

Parameter	GANIL FRANCE	SILHI (SPIRAL -2) FRANCE	CEA/Saclay (IFMIF) FRANCE	PKUNIFTY CHINA	LBNL USA
Microwave Power	1200 Watt, 2.45GHz,	1200 Watt, 2.45GHz	2000 Watt, 2.45 GHz	800 Watt, 2.45GHz	700 Watt, 2.45GHz
Magnet System	Two Coaxial NdFeB permanent magnet Ring	Three Coaxial NdFeB permanent magnet Ring	Two solenoid configuration	Three Coaxial NdFeB permanent magnet Ring	Two solenoid configuration
Plasma Chamber	90mm diameter, Water cooled	90mm diameter, Water cooled	90mm diameter, Water cooled	40/50 mm diameter, OFHC Copper, with Al liner	92mm diameter, Water cooled
Beam Optics	4 electrode extraction system with 40 kV max,	5 electrode extraction system with 50 kV max,	5 electrodeextractionsystem with 55kV max,	3 electrodeextractionsystem with50 kV max,	extraction
Extraction aperture	7mm	3 mm	9mm	5mm	3mm
Beam Emittance (π mm mrad)	0.2	< 0.1	0.25	0.2	0.04
Max Beam Current	40 (P)	ECRIS DO 20_Sudhir_2	29 549(D) 0_15:15	100(D)	44(D) 5

Schematic diagram of 2.45 GHz ECR ion Source bench

2.45 GHz ECR ion source bench at IPR

Magnetic lens, 0.350 T, 255mm, 40 mm half aperture

Allison scanner

ECRIS2020_Sudhir_29Sept2020_15:15

2.45 GHz ECR Ion Source

Results of ion beam Extraction

Measurement deuterium beam current as function extraction voltage & microwave power

Measurement deuterium beam current as function extraction voltage & pressure (mass flow rate) with fix microwave power 400 W

Results of Emittance measurements

Summary

- ✓ For the better focusing of the ion beam into the LEBT, the Einzel lens has been replaced with the magnetic lens (Solenoid)
- ✓ To measure the beam emittance dual Allison emittance scanner has been integrated into the test bench.
- √The beam characterization experiments have been successfully performed.
- ✓The beam emittance, as well as beam profile, have been measured as a function of solenoid current.
- ✓ The normalized emittance is < 0.2 pi.mm.mrad
- ✓ The beam diameter is < 20 mm

