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Plasma
Investigations

● POSSU monochromator
● Ion confinement times
● Plasma instabilities



POSSU monochromator

 High resolution optical spectrometer
(Fastie-Ebert type)

 Resolution is sufficient to determine Doppler 
broadening of ion emission lines →

Ion temperatures (~5 eV – 28 eV)
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10 pm @ 632 nm
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(Fastie-Ebert type)
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Ion temperatures (~5 eV – 28 eV)
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– ion / neutral densities

– cold e- temperature
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Future upgrade:
time-resolved measurement of 
emission line profiles.



Ion confinement times

 Very important for RIB production!
 Focus on transient methods

– Pulse material injection

– Study extraction current time structure
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Ion confinement times

 Very important for RIB production!
 Focus on transient methods

– Pulse material injection

– Study extraction current time structure

 Mutual agreement in results from conventional 
and CB-ECRIS

 Long confinement times = partial explanation
for high ion temperatures?
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Data replotted from M. Marttinen et al., Rev. Sci. 
Instrum., vol. 91, issue 1, (2020)



Plasma instabilities
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 Cross instability threshold →

– Pulse periodic emission of
µW, X-ray and e-

– Periodic decline / 
total collapse of beam
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● Transition into 
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maser regime:
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Increase B
min

/B
ECR

 → 
● Transition into 

“CW emission” / 
maser regime:
● Continuous µW 

emission
● Average charge of 

extracted oxygen 
sometimes higher than 
in stable regime! ‘Tuning an ECR ion source is searching for an 

island of stability in a sea of turbulence’

- R. Geller
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Source 
Development

● HIISI experiences
● CUBE-ECRIS



HIISI 18 GHz ECRIS

 One year running since commissioning.
 In active use at the K130 cyclotron.
 Produces high intensities and high charge states.

 Problems during 1st year of operation:

– one hardened O-ring
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CUBE-ECRIS

 Unconventional min-B quadrupole field topology based 
on the ARC-ECRIS design, but with permanent magnets.

 Scalable to 100 GHz using existing superconductor tech.

 Goals:

–  study HCI production 

– demonstrate slit beam extraction

 Magnet assembly is finished and the resulting field is 

verified

 First plasma expected in Q1/2021

09/28/2020JYU SINCE 1863. 8

Beam direction
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 Unconventional min-B quadrupole field topology based 
on the ARC-ECRIS design, but with permanent magnets.

 Scalable to 100 GHz using existing superconductor tech.

 Goals:

–  study HCI production 

– demonstrate slit beam extraction

 Magnet assembly is finished and the resulting field is 

verified

 First plasma expected in Q1/2021

Beam direction
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