
OPTICAL STOCHASTIC COOLING IN A GENERAL COUPLED LATTICE
Xiujie Deng∗, Tsinghua University, Beijing, China

Abstract
Here we present a formalism of optical stochastic cooling

in a 3D general coupled lattice. The formalism is general,
and can treat a variety of damping and diffusion mechanisms
within a single framework. We expect the work to be of value
for the development of future light source.

GENERAL FORMALISM OF STORAGE
RING PHYSICS

Particle state vector X = (𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧, 𝛿)𝑇 is used
throughout this paper, with its components meaning the hor-
izontal position, horizontal angle, vertical position, vertical
angle, longitudinal position, and relative energy difference
of a particle with respect to the reference particle, respec-
tively. The superscript 𝑇 means the transpose of a vector or
matrix. Following Chao’s solution by linear matrix (SLIM)
formalism [1], we can introduce the definition of the gener-
alized beta functions in a 3D general coupled storage ring
lattice as

𝛽𝑘𝑖 𝑗 = 2Re
(
E𝑘𝑖E∗

𝑘 𝑗

)
, 𝑘 = 𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼, (1)

where ∗ means complex conjugate, the sub or superscript 𝑘
denotes one of the three eigenmodes, Re() means the real
component of a complex number or matrix, E𝑘𝑖 is the 𝑖-th
component of vector E𝑘 , and E𝑘 are eigenvectors of the
6 × 6 symplectic one-turn map M with eigenvalues 𝑒𝑖2𝜋𝜈𝑘 ,
satisfying the following normalization condition

E†
𝑘
SE𝑘 =

{
𝑖, 𝑘 = 𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼,

−𝑖, 𝑘 = −𝐼,−𝐼 𝐼,−𝐼 𝐼 𝐼,
(2)

and E†
𝑘
SE 𝑗 = 0 for 𝑘 ≠ 𝑗 , where † means complex conjugate

transpose, and

S =

©­­­­­­­«

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

ª®®®®®®®¬
. (3)

Since the one-turn map is a real symplectic matrix, for a
stable motion, we have

𝜈−𝑘 = −𝜈𝑘 , E−𝑘 = E∗
𝑘 . (4)

Using the generalized beta function, we can write the eigen-
vector component as

E𝑘 𝑗 =

√︄
𝛽𝑘
𝑗 𝑗

2
𝑒
𝑖𝜙𝑘

𝑗 . (5)
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And according to definition we have

𝛽𝑘𝑖 𝑗 =

√︃
𝛽𝑘
𝑖𝑖
𝛽𝑘
𝑗 𝑗

cos(𝜙𝑘
𝑖 − 𝜙𝑘

𝑗 ). (6)

Similarly, here we introduce the definition of imaginary
generalized beta functions as

𝛽𝑘𝑖 𝑗 = 2Im
(
E𝑘𝑖E∗

𝑘 𝑗

)
, 𝑘 = 𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼, (7)

where Im() means the imaginary component of a complex
number or matrix. Further we can define the real and imag-
inary generalized Twiss matrices of a storage ring lattice
corresponding to three eigen mode as

(T𝑘)𝑖 𝑗 = 𝛽𝑘𝑖 𝑗 ,

(
T̂𝑘

)
𝑖 𝑗
= 𝛽𝑘𝑖 𝑗 , 𝑘 = 𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼 . (8)

Due to the symplecticity of the one-turn map, we have

T𝑇
𝑘 = T𝑘 , T̂𝑇

𝑘 = −T̂𝑘 , (9)

where 𝑇 means transpose. The generalized Twiss matrices
at different places are related according to

T𝑘 (𝑠2) = R(𝑠2, 𝑠1)T𝑘 (𝑠1)R𝑇 (𝑠2, 𝑠1),
T̂𝑘 (𝑠2) = R(𝑠2, 𝑠1)T̂𝑘 (𝑠1)R𝑇 (𝑠2, 𝑠1),

(10)

with R(𝑠2, 𝑠1) being the transfer matrix from 𝑠1 to 𝑠2.
The action or generalized Courant-Snyder invariants of a

particle are defined according to

𝐽𝑘 ≡ X𝑇G𝑘X
2

, 𝑘 = 𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼, (11)

where
G𝑘 ≡ S𝑇T𝑘S. (12)

It is easy to prove that 𝐽𝑘 are invariants of a particle when
it travels around the ring, from the symplectic condition
R𝑇SR = S. The three eigenemittance of a beam containing
𝑁𝑝 particles are defined according to

𝜖𝑘 ≡ ⟨𝐽𝑘⟩ =
∑𝑁𝑝

𝑖=1 𝐽𝑘,𝑖

𝑁𝑝

, 𝑘 = 𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼, (13)

where 𝐽𝑘,𝑖 means the 𝑘-th mode invariant of the 𝑖-th particle.
Assume there is a perturbation K to the one-turn map M,

i.e., Mper = (I + K)Munp. From cannonical perturbation
theory [2], the tune shift of the 𝑘-th eigen mode is then

Δ𝜈𝑘 = − 1
4𝜋

Tr
[(

T𝑘 + 𝑖T̂𝑘

)
SK

]
, (14)

where Tr() means the trace of a matrix. This formula can be
used to calculate the real and imaginary tune shifts due to
symplectic (for example lattice error) and non-symplectic
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(for example radiation damping) pertubrations. The pertu-
bation theory can also be applied to calcuate the emittance
growth due to diffusion [2]. With the help of real and imag-
inary generalized beta functions and Twiss matrices, the
diffusion of emittance per turn can be calculated as

Δ𝜖𝑘 = −1
2

∮
Tr (T𝑘SNS) 𝑑𝑠 = 1

2

∮
Tr (G𝑘N) 𝑑𝑠, (15)

and the damping rate of each eigen mode is

𝛼𝑘 = −1
2

∮
Tr

(
T̂𝑘SD

)
𝑑𝑠, (16)

where N and D are the diffusion and damping matrix, re-
spectively. Note that the damping rates here are that for the
corresponding eigenvectors. The damping rates for particle
action or beam emittance is a factor of two larger. The equi-
librium eigenemittance between a balance of diffusion and
damping can be calculated as

𝜖𝑘 =
Δ𝜖𝑘

2𝛼𝑘

=
− 1

2
∑

𝑖, 𝑗

∮
𝛽𝑘
𝑖 𝑗
(SNS)𝑖 𝑗 𝑑𝑠∑

𝑖, 𝑗

∮
𝛽𝑘
𝑖 𝑗
(SD)𝑖 𝑗 𝑑𝑠

, (17)

After getting the equilibrium eigenemittances, the second
moments of beam can be written as

Σ𝑖 𝑗 =
∑︁

𝑘=𝐼,𝐼 𝐼 ,𝐼 𝐼 𝐼

𝜖𝑘𝛽
𝑘
𝑖 𝑗 , (18)

or in matrix form as

𝚺 =
∑︁

𝑘=𝐼,𝐼 𝐼 ,𝐼 𝐼 𝐼

𝜖𝑘T𝑘 . (19)

QUANTUM EXCITATION AND
RADIATION DAMPING

In an electron storage ring, the intrinsic diffusion and
damping are both from the emission of photons, i.e., quan-
tum excitation and radiation damping. For quantum excita-
tion, we have all the other components of diffusion matrix
N zero except that

𝑁66 =
2𝐶𝐿𝛾

5

𝑐 |𝜌 |3
(20)

where 𝑐 is the speed of light in free space, 𝜌 is the benging
radius of particle trajectory, 𝛾 here is the relativistic factor,
𝐶𝐿 = 55

48
√

3
𝑟𝑒ℏ

𝑚𝑒
with 𝑟𝑒 the classical electron radius, ℏ the

reduced Planck’s constant, 𝑚𝑒 the electron mass.
For radiation damping, we have two sources of damping,

i.e., dipole magnets and RF cavity. For a horizontal dipole,
we have all the matrix terms of D zero except that

𝐷66 = − 1
𝜋
𝐶𝛾

𝐸3
0

𝜌2 , 𝐷61 = −
𝐶𝛾𝐸

3
0

2𝜋
1 − 2𝑛
𝜌3 , (21)

where 𝐶𝛾 = 4𝜋
3

𝑟𝑒

(𝑚𝑒𝑐
2)3 = 8.85 × 10−5 m

GeV2 , 𝑛 = − 𝜌

𝐵𝑦

𝜕𝐵𝑦

𝜕𝑥

is the transverse field gradient index. For an RF cavity, we
have all the matrix terms of D zero except that

𝐷22 = 𝐷44 = −𝑈0
𝐸0

𝛿(𝑠RF), (22)

where𝑈0 is the radiation energy loss of a particle per turn, 𝐸0
is the particle energy, and 𝛿(𝑠) means Dirac’s delta function.
Here we have assumed that the RF cavity is a zero-length
one. Using the developed formalism, it is easy to show that
for radiation damping, we have

𝛼𝐼 + 𝛼𝐼 𝐼 + 𝛼𝐼 𝐼 𝐼 = −1
2

∮
Tr(D)𝑑𝑠 = 2𝑈0

𝐸0
, (23)

which is the well-known Robinson’s sum rule [3].
In a planar uncoupled electron storage ring, this general

formalism reduces to the classical results of Sands, i.e., the
radiation integrals formalism found in textbooks [4]. More
specifically in this case we have the equilibrium emittance

𝜖𝑥 =
𝐶𝐿𝛾

5

2𝑐𝛼𝐼

∮
𝛽𝐼55

|𝜌(𝑠) |3
𝑑𝑠 =

𝐶𝐿𝛾
5

2𝑐𝛼𝐼

∮ H𝑥 (𝑠)
|𝜌(𝑠) |3

𝑑𝑠,

𝜖𝑦 =
𝐶𝐿𝛾

5

2𝑐𝛼𝐼 𝐼

∮
𝛽𝐼 𝐼55

|𝜌(𝑠) |3
𝑑𝑠 =

𝐶𝐿𝛾
5

2𝑐𝛼𝐼 𝐼

∮ H𝑦 (𝑠)
|𝜌(𝑠) |3

𝑑𝑠,

𝜖𝑧 =
𝐶𝐿𝛾

5

2𝑐𝛼𝐼 𝐼 𝐼

∮
𝛽𝐼 𝐼 𝐼55

|𝜌(𝑠) |3
𝑑𝑠 =

𝐶𝐿𝛾
5

2𝑐𝛼𝐼 𝐼 𝐼

∮
𝛽𝑧 (𝑠)
|𝜌(𝑠) |3

𝑑𝑠,

(24)

with the H -function defined as H = 𝛾𝐷2 + 2𝛼𝐷𝐷′ + 𝛽𝐷′2,
where 𝛼, 𝛽, 𝛾 are the classical Courant-Snyder functions [5],
and the damping constants, according to Eq. (16), being

𝛼𝐼 =
𝑈0
2𝐸0

©­­«1 −

∮
𝐷𝑥

(
1−2𝑛
𝜌3

)
𝑑𝑠∮

1
𝜌2 𝑑𝑠

ª®®¬ ,
𝛼𝐼 𝐼 =

𝑈0
2𝐸0

,

𝛼𝐼 𝐼 𝐼 =
𝑈0
2𝐸0

©­­«2 +

∮
𝐷𝑥

(
1−2𝑛
𝜌3

)
𝑑𝑠∮

1
𝜌2 𝑑𝑠

ª®®¬ .
(25)

OPTICAL STOCHATIC COOLING
Damping Rate in Linear Approximation

Now we apply the formalism to optical stochastic cool-
ing (OSC) [6–9]. Denote the symplectic transfer matrix of
particle state evector from the pick-up undulator to the kiker
undulator as R. Assume that the change of a particle’s en-
ergy induced in the kicker undulator due to its own radiation
at the pick-up undulator is

Δ𝛿 = −𝐴 sin(𝑘𝑅Δ𝑧) (26)

with
Δ𝑧(𝑠2, 𝑠1) = 𝑅51𝑥1 + 𝑅52𝑥

′
1 + 𝑅53𝑦1 + 𝑅54𝑦

′
1

+ 𝑅55𝑧1 + 𝑅56𝛿1 − 𝑧1,
(27)

where we have used the subscripts 1 and 2 to represent the
location of pick-up undulator and kicker undulator, respec-
tively. Usually we have 𝑅55 = 1.

Linearizing the energy kick around the zero-crossing
phase, we have the effective change of state vector at the
pick-up undulator as

ΔX1 = DX1, (28)
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with the perturbation matrix at the pick-up undulator
D = −𝐴𝑘𝑅

©­­­­­­­­­«

−𝑅51𝑅52 −𝑅2
52 −𝑅52𝑅53 −𝑅52𝑅54 −

(
𝑅55 − 1

)
𝑅52 −𝑅52𝑅56

𝑅2
51 𝑅51𝑅52 𝑅51𝑅53 𝑅51𝑅54

(
𝑅55 − 1

)
𝑅51 𝑅51𝑅56

−𝑅51𝑅54 −𝑅52𝑅54 −𝑅53𝑅54 −𝑅2
54 −

(
𝑅55 − 1

)
𝑅54 −𝑅54𝑅56

𝑅51𝑅53 𝑅52𝑅53 𝑅2
53 𝑅53𝑅54

(
𝑅55 − 1

)
𝑅53 𝑅53𝑅56

−𝑅51𝑅56 −𝑅52𝑅56 −𝑅53𝑅56 −𝑅54𝑅56 −
(
𝑅55 − 1

)
𝑅56 −𝑅2

56
𝑅51𝑅55 𝑅52𝑅55 𝑅53𝑅55 𝑅54𝑅55

(
𝑅55 − 1

)
𝑅55 𝑅55𝑅56

ª®®®®®®®®®¬
.

(29)

Then, we have the sum rule for the OSC damping rates of
three eigen modes

𝛼𝐼,0 + 𝛼𝐼 𝐼,0 + 𝛼𝐼 𝐼 𝐼,0 = −1
2

Tr (D) = 𝐴𝑘𝑅𝑅56
2

. (30)

The subscript 0 is used to denote that the damping rates are
calculated by linearizing the energy kick around the zero-
crossing phase. The OSC damping rate of each eigen mode
can be calculated according to Eq. (16). More specifically,

𝛼𝐼,0 = − 𝐴𝑘𝑅

2

(
𝑅51𝛽

𝐼
51 + 𝑅52𝛽

𝐼
52

+𝑅53𝛽
𝐼
53 + 𝑅54𝛽

𝐼
54 + 𝑅56𝛽

𝐼
56

)
,

𝛼𝐼 𝐼,0 = − 𝐴𝑘𝑅

2

(
𝑅51𝛽

𝐼 𝐼
51 + 𝑅52𝛽

𝐼 𝐼
52

+𝑅53𝛽
𝐼 𝐼
53 + 𝑅54𝛽

𝐼 𝐼
54 + 𝑅56𝛽

𝐼 𝐼
56

)
,

𝛼𝐼 𝐼 𝐼,0 = − 𝐴𝑘𝑅

2

(
𝑅51𝛽

𝐼 𝐼 𝐼
51 + 𝑅52𝛽

𝐼 𝐼 𝐼
52

+𝑅53𝛽
𝐼 𝐼 𝐼
53 + 𝑅54𝛽

𝐼 𝐼 𝐼
54 + 𝑅56𝛽

𝐼 𝐼 𝐼
56

)
.

(31)

Amplitude-dependent Damping Rate
In the above analysis, we have linearized the sinusoidal

energy kick around the zero-crossing phase. Without such
approximation, the damping rates will be different for parti-
cles with different betatron or synchrotron amplitudes. The
betatron and synchrotron oscillation-averaged damping rates
in a 3D general coupled lattice are then

𝛼𝐼 = 2𝛼𝐼,0
𝐽1 (𝑘𝑅𝑎𝐼 )𝐽0 (𝑘𝑅𝑎𝐼 𝐼 )𝐽0 (𝑘𝑅𝑎𝐼 𝐼 𝐼 )

𝑘𝑅𝑎𝐼
,

𝛼𝐼 𝐼 = 2𝛼𝐼 𝐼,0
𝐽0 (𝑘𝑅𝑎𝐼 )𝐽1 (𝑘𝑅𝑎𝐼 𝐼 )𝐽0 (𝑘𝑅𝑎𝐼 𝐼 𝐼 )

𝑘𝑅𝑎𝐼 𝐼
,

𝛼𝐼 𝐼 𝐼 = 2𝛼𝐼 𝐼 𝐼,0
𝐽0 (𝑘𝑅𝑎𝐼 )𝐽0 (𝑘𝑅𝑎𝐼 𝐼 )𝐽1 (𝑘𝑅𝑎𝐼 𝐼 𝐼 )

𝑘𝑅𝑎𝐼 𝐼 𝐼
,

(32)

with 𝐽𝑛 the 𝑛-th order Bessel function of the first kind, and

𝑎𝐼 =

√︃
2𝐽𝐼

[
𝛽𝐼11𝑅

2
51 + 2𝛽𝐼12𝑅51𝑅52 + 𝛽𝐼22𝑅

2
52
]
,

𝑎𝐼 𝐼 =

√︃
2𝐽𝐼 𝐼

[
𝛽𝐼 𝐼33𝑅

2
53 + 2𝛽𝐼 𝐼34𝑅53𝑅54 + 𝛽𝐼 𝐼44𝑅

2
54
]
,

𝑎𝐼 𝐼 𝐼 =

√︃
2𝐽𝐼 𝐼 𝐼

[
𝛽𝐼 𝐼 𝐼55 𝑅2

55 + 2𝛽𝐼 𝐼 𝐼56 𝑅55𝑅56 + 𝛽𝐼 𝐼 𝐼66 𝑅2
56
]
,

(33)

where 𝐽𝐼,𝐼 𝐼 ,𝐼 𝐼 𝐼 mean the generalized Courant-Snyder invari-
ants of the particle.

The first roots of 𝐽0 (𝑥) and 𝐽1 (𝑥) are 𝜇01 ≈ 2.405 and
𝜇11 ≈ 3.83. The range of betatron and synchrotron oscilla-
tion amplitude which gives a positive damping rate is called

cooling range. If we want a cooling range a factor of 𝑁 larger
than RMS oscillation amplitude of the particle beam in all
three modos, then we need 𝑁𝑘𝑅 �̄�𝑘 < 𝜇01, 𝑘 = 𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼,

where �̄�𝑘 is 𝑎𝑘 with 2𝐽𝑘 in the expression replaced by 𝜖𝑘 . For
example, �̄�𝐼 =

√︃
𝜖𝐼

[
𝛽𝐼11𝑅

2
51 + 2𝛽𝐼12𝑅51𝑅52 + 𝛽𝐼22𝑅

2
52
]
. The

physical meaning of �̄�𝑘 is the RMS lengthening of a longitu-
dinal slice from pick-up to kicker undulator from the 𝑘-mode
eigen emittance. If we only need cooling in one mode, then
the cooling range can be larger, i.e., 𝑁𝑘𝑅 �̄�𝑘 < 𝜇11.

Planar Uncoupled Ring
The above results apply for a 3D general coupled lattice.

For a ring without 𝑥-𝑦 coupling and when RF cavity is placed
at dispersion-free location, we can express the normalized
eigenvectors using classical Courant-Snyder functions and
dispersion 𝐷 and dispersion angle 𝐷′ [10]. Then we have

𝛼𝐼,0 = −
𝐴𝑘𝑅

(
𝑅51𝐷𝑥1 + 𝑅52𝐷

′
𝑥1
)

2
,

𝛼𝐼 𝐼 𝐼,0 =
𝐴𝑘𝑅𝑅56

2
− 𝛼𝐼,0,

(34)

or in a more elegant form as

𝛼𝐼,0 =
𝐴𝑘𝑅

2
√︁
H𝑥1H𝑥2 sin (Δ𝜓𝑥21 − Δ𝜒𝑥21) ,

𝛼𝐼 𝐼 𝐼,0 =
𝐴𝑘𝑅

2
𝐹,

(35)

where Δ𝜓𝑥21 = 𝜓𝑥2 − 𝜓𝑥1 =
∫ 𝑠2
𝑠1

1
𝛽𝑥
𝑑𝑠 is the the horizontal

betatron phase advance, and Δ𝜒𝑥21 = 𝜒𝑥2 − 𝜒𝑥1 is the hori-
zontal chromatic phase advance, from the pick-up to kicker
undulator, and

𝐹 (𝑠2, 𝑠1) = −
∫ 𝑠2

𝑠1

(
𝐷𝑥 (𝑠)
𝜌(𝑠) − 1

𝛾2

)
𝑑𝑠. (36)

To obtain the final concise result, 𝐷 and 𝐷′ have been ex-
pressed in terms of the chromatic H -function and the chro-
matic phase 𝜒, according to

𝐷 =
√︁
H 𝛽 cos 𝜒, 𝐷′ = −

√︁
H/𝛽 (𝛼 cos 𝜒 + sin 𝜒) . (37)

Some observations are in order based on Eq. (35). First,
to induce damping on the eigen mode III, which usually cor-
responds to the longitudinal dimension, we need a nonzero
𝐹. Second, to induce damping on mode I, which usually cor-
responds to the horizontal dimension, both the pick-up and
kicker undulators need to be placed at dispersive locations.
Further, we need to make sure the chromatic phase advance
between the two undulators is different from the correspond-
ing betatron phase advance, and the sign of damping rate
depends on the difference of chromatic and betatron phase
advance. For example, if it is an achromat between pick-up
and kicker undulators, which means 𝑅51 = 0 and 𝑅52 = 0,
then there will be no damping on the eigen mode I.
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The amplitude-dependent damping rates in this case are

𝛼𝐼 = −
𝐴
(
𝑅51𝐷𝑥1 + 𝑅52𝐷

′
𝑥1
)√︃

2𝐽𝑥
[
𝛽𝑥1𝑅

2
51 − 2𝛼𝑥1𝑅51𝑅52 + 𝛾𝑥1𝑅

2
52
]

𝐽1

(
𝑘𝑅

√︃
2𝐽𝑥

[
𝛽𝑥1𝑅

2
51 − 2𝛼𝑥1𝑅51𝑅52 + 𝛾𝑥1𝑅

2
52
] )

𝐽0

(
𝑘𝑅𝐹

√︁
2𝐽𝑧𝛾𝑧1

)
,

𝛼𝐼 𝐼 𝐼 =
𝐴√︁

2𝐽𝑧𝛾𝑧1

𝐽0

(
𝑘𝑅

√︃
2𝐽𝑥

[
𝛽𝑥1𝑅

2
51 − 2𝛼𝑥1𝑅51𝑅52 + 𝛾𝑥1𝑅

2
52
] )

𝐽1

(
𝑘𝑅𝐹

√︁
2𝐽𝑧𝛾𝑧1

)
,

(38)

where the horizontal and longitudinal action of a particle in
a plannar uncoupled storage ring are defined as

𝐽𝑥 ≡
(𝑥 − 𝐷𝑥𝛿)2 +

[
𝛼𝑥 (𝑥 − 𝐷𝑥𝛿) + 𝛽𝑥 (𝑥′ − 𝐷′

𝑥𝛿)
]2

2𝛽𝑥
,

𝐽𝑧 ≡
(
𝑧 − 𝐷′

𝑥𝑥 − 𝐷𝑥𝑥
′)2 +

[
𝛼𝑧 (𝑧 − 𝐷′

𝑥𝑥 − 𝐷𝑥𝑥
′) + 𝛽𝑧𝛿

]2

2𝛽𝑧
.

(39)
In the above equation, we can also write

𝑅51𝐷𝑥1 + 𝑅52𝐷
′
𝑥1 = −

√︁
H𝑥1H𝑥2 sin(Δ𝜓𝑥21 − Δ𝜒𝑥21),

𝛽𝑥1𝑅
2
51 − 2𝛼𝑥1𝑅51𝑅52 + 𝛾𝑥1𝑅

2
52

= H𝑥1 + H𝑥2 − 2
√︁
H𝑥1H𝑥2 cos (Δ𝜓𝑥21 − Δ𝜒𝑥21) .

(40)
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