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Accelerator roadmap ﬂ(IT

Karlsruhe Institute of Technology

Photon science

Energy frontier
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Ability to generate new particles
Ability to probe atomic structures

Technological innovation is needed to keep up with the challenging goals

Source: “Particle beams behind physics discoveries" (Physics Today)
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Trends and challenges of frontier accelerators _\\J(IT

Karlsruhe Institute of Technology

Denser beams for | ;iex beam dynamics

=
higher luminosity =« Complex accelerator <
and brilliance design and operation g
Larger circular e Orders of magnitude Z

. . i L o
colliders for higher MOresienas = 5
. e Machine protection g

energies limits B
Compact plasma e Tight tolerances @
accelerators with e High-quality beams :
higher gradients iUl £
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What is machine learning? __\\J(IT

Karlsruhe Institute of Technology

ARTIFICIAL INTELLIGENCE (Al)

Computers mimic Narrow Al
human behaviour

) o MACHINE LEARNING (ML)

First chatbots . :

Robotics Computers learn without being

Expert systems explicitly programmed to do so DEEP LEARNING (DL)

Natural language and improve with experience
processing

: Multi-layered neural networks perform
* Fuzzy logic

. Explainable A certain tasks with high accuracy
A @ * Speech/handwriting
recognition
{o o) ent

* Language translation
* Recommendation engines
* Computer vision
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Data 1 Algorithm
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Learning style

Supervised Learning

We know the input & output

(labeled data)

Unsupervised
Learning

We only know the input
(unlabeled data)

Machine Learning

Reinforcement

Learning

Classification
(discrete variables)

Regression
(continuous variables)

Clustering

Association

Classification

Popular algorithms

= Qeural networksXe.g. stochastic
gradient descent, backpropagation)

Support Vector Machine

K-nearest neighbor

Decision Tree algorithms (e.g.
Classification and Regression Tree)
Random Forest (ensemble)

Uni or multivariate, linear or logistic

K-means

K-medians

Expectation Maximization (EM)
Hierarchical clustering

Apriori algorithm
Eclat algorithm

Model-free
» Value based (Q-learning)
= Policy based
= Deterministic or stochastic
= On or off policy
= Policy gradient
Model based
= Learn the model
= Model given
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Deep Learning Networks

Convolutional Neural
Networks

Recurrent Neural Networks
Long Short-Term Memory
Networks

Autoencoders

Deep Boltzmann Machine
Deep Belief Networks

Bayesian Algorithms

Naive Bayes
Gaussian Naive Bayes
Bayesian Network

= Bayesi i twork
ayesian optimizatio

Regularization,
dimensionality
reduction, ensemble,
evolutionary algorithms,
computer vision,
recommender systems,

FLS'23



Machine learning opportunities in accelerators ﬂ(IT

Karlsruhe Institute of Technology

Advantages of ML methods: 2 2%
. . . . b= Total of 707 AI/ML papers
= Yield fast predictions at:a reduced cqmputatlonal cost 2 100{  JACOW database
= Take into account non-linear correlations £
= Adapt the predictions to the drifts in the machine state
0_
&
Task Goal Methods/Concepts Examples!
Detection Detect outliers and anomalies e Anomaly detection e Collimator alignment

in accelerator signals for interlock
prediction, data cleaning

e Time series forecasting
e Clustering

Optics corrections
SRF quench detection

Prediction Predict the beam properties based
on accelerator parameters

e Virtual diagnostics
e Surrogate models
e Active learning

Beam energy prediction
e Accelerator design
e Phase space reconstruction

Optimization Achieve desired beam properties
or states by tuning accelerator parameters

e Numerical optimizers

Bayesian optimization
Genetic algorithm

Injection efficiency
e Radiation intensity

Control Control the state of the beam in real time
in a dynamically changing environment

e Reinforcement learning
e Bayesian optimization
e Extremum Seeking

e Trajectory steering
e Instability control

I non-exhaustive
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A vision for future accelerators, driven by ML _\\J(IT

Autonomous
operation
Faster start-up

Faster commissioning

Faster set-up of special

Karlsruhe Institute of Technology

Continuous K I W’E

-
beam dellve ! KIT Testfeld fir Energieeffizienz und Netzstabilitat

in groBen Forschungsinfrastrukturen

Failure & interlock prediction
= KARA + Energy Lab 2.0

Preventative maintenance

Virtual diagnostics

creased beam
availability

Energy-responsible infrastructure R&D from

=
modes - accelerator components to systems
Subsystem
New operation ° Reduced Real Time Energy Lab 2.0 Communication 6_\0“>iJ g ?Ubsys'em
modes possible operation costs Sdeeadl o AP 70, Sf e i
Z St &
Intelligent 2 . /ﬁ Svaien . 8
2 nergy L s
72}
contrOI Of E - ' ] !] e Subsystem
. g responsible sowrev [
beam dynamics 2 M- Tharma
&=
Phase space manipulation = Increased sustainability Real-time power consumption data from the accelerator
Tailored beams for Users _ Power quality v.wll t_)e fed to a digital twin that can emulate with h!gh
N . Improvement fidelity the accelerator power and energy dynamics
nstability contro during power systems studies.
FLS'23
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ML for light sources — some examples

Source stabilization

Instability control
= | ow-latency intelligent feedbacks

Assisting operation

= Automated set-up / tuning
= |njection optimization, beam steering
and focusing, PBA tuning
= Special operation modes
» Negative a,
= Pulse optimization
» Energy, E-field, spectrum
= Faster commissioning
= Virtual diagnostics

Faster lattice design

KIT

Karlsruhe Institute of Technology

In the future:
O Uncertainty quantification
O Explainability/interpretability
O Robustness

0 Safety

a ..
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Accelerator facilities at KIT

FLUTE

Linac-based THz source
41 MeV top energy

KARA

Synchrotron light source and storage ring
2.5 GeV top energy
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Tailoring THz
radiation with
machine learning
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Example: start-to-end pulse optimization in linac (FLUTE) ﬂ(IT

/ Karlsruhe Institute of Technology
Surrogate model
1. Mean ener
+ 1. RFgunphase 2. Energy sprigd Deep neural networks
2 B lCe 3. RMS bunch length Control over laser pulse length,
c 3. Solenoid current 4 Beam size | h tsi t iti
£ [N yc— : . pulse shape, spot size, spot position
3. Em'tta”_cef with spatial light modulators (SLMs)
\ C. Xu et al. TUPOPT070, IPAC22 Eo Vb e Elig PRl C. Xu et al. WEPAB289, IPAC21
Split ring e T
Gun laser resonaton, craper
Can inform/guide . 2 sggcﬁgfﬁifer LINAC - D DSR port
the optimization i = h_l_l_|_ _EE._L _____ = D prarsday cu
with smart initial 'Eﬁ;"f“ EE T‘—’ W@“"‘G’“ B N Sy ¥ s~
guesses Solenoid ‘ = ' o 5y
THz generation
/Parallel Bayesian optimization C.-Xu etal WEPOMS023. IPAC22 AL N

. RF gun phase

. RF gun amplitude

. Solenoid current

. Linac phase

. Linac amplitude

. Chicane bending radius

Long. phase space
Spectral intensity
Form factor

Bunch current profile
THz pulse E-field

= Min. RMS bunch
length after chicane
Max. peak E-field of
CSR pulse

input

OO WN -~
objective

o8 BN @ B

-
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https://inspirehep.net/files/16d580d5337ba0b7ce86cb0ca3e0a78f
https://inspirehep.net/files/7dec31de066327efe71447119f909d2e
https://accelconf.web.cern.ch/ipac2021/papers/wepab289.pdf

Bayesian optimization algorithm transferred to EuUXFEL

tuning by BO algorithm
C. Xu et al., PhysRevAccelBeams.26.034601

Time to inject to KARA cut in half with automated

parallel BO in simulation
C. Xu et al, IPAC'22-WEPOMS023

0E— 0 <— 0O

emission C.-Xu etal, IPAC'23-THPL028

Emitted THz radiation at FLUTE optimized with

Transfer of algorithm to EUXFEL to tune SASE

KIT

Karlsruhe Institute of Technology

SASE1/ 250pC / 9.3keV

Bayesian Optimization

3000
T | e
g w0 5..:; ,‘{
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W o0 r* *':r-
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00,4 f
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— o visualize the sensitivity of

0

Code available at: https://github.com/cr-xu/bo-4-euxfel

10 0.05 0.00 0.05 0.10
Horizontal Correction [mm]

actuators with respect to an
objective and assist operators
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https://doi.org/10.1103/PhysRevAccelBeams.26.034601
https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS023
https://www.ipac23.org/preproc/pdf/THPL028.pdf
https://github.com/cr-xu/bo-4-euxfel

First detailed comparison of BO and RL in a ’ ﬂ(IT

real accelerator

J. Kaiser, C. Xu et al, arxiv: 2306.03739 Reinforcement Learnlng

Bayesian Optimization

» Task: focus and position the electron beam
= Actuators: 3 quadrupole magnets + 2 corrector magnets
= Observation: beam image on the diagnostic screen

Observed beam 0 20 40 60 80 100 120 140

parameters

—~
N
Steering 7
Steering Quadrupole magnet -9 __________
magnet magnet Camera looking b ————————
Quadrupole c; Q3 at diagnostic screen Q
Quadrupole magne i
magnet o E ~
Q1 r M\ TSS=mmmmm=ms=======o===s=sssseas
ol & L (P £
= 4
{ WA\ e
- e ——
C ! I 1 ! I 1 1 ]
Incomlng electron

b Step
I —— RLO (real world) —— BO (real world) —=~=Nelder-Mead simplex (simulation)
—==RLO (simulation) ——= BO (simulation) ——- Random search (simulation)

Ri-trained .~

—_— 1
policy
BO
" implementation | +——
Target beam
” ‘ parameters

b’ Operator

RL optimization outperforms BO
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https://arxiv.org/abs/2306.03739
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First detailed comparison of BO and RL in a
real accelerator

RLO BO Reinforcement Learning
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Lattice agnostic RL - Generalizable RL ﬂ(IT

Karlsruhe Institute of Technology

= Goal: train a generalizable RL agent for transverse control BT ) LEEUTIHE
C. Xu et al, IPAC23-THPL029

= Method (domain randomization DR):
* randomize magnet positions in training
» keep QQQCC order

Universal agent that
, . . can be deployed at
- Agent can’t memorize magnet settings similar but different
accelerators

S-Band RF Gun Solenoids
ExverimenitaiAread Magnetic TDS + Diagnostics
/ /\ P y Compressor Beamline
KChu:ane I
o o 0 nn nnofeaal I 1o A |
ARES g O O O od | mpE [ 1
:5\? S-B dI’ Ml S-B. dTI' Ili L i tal T v T
un -Band Travelling -Band Travelling erimenta " " g .
Solenoids Wave Structure 1 Wave Structure 2 Quadrupole Chamber Dipole Collimator  X-Band PolariX TDS  Spectrometer
Split ring
¥ resonator
= | 1 pliim .
FLUTE M __._E_____;__%_‘9__‘f.\ff\{y_\_/_\‘}f)f;_\f\.’\_:_%ﬁ ) (e e Bl N LUl ety I TE‘.-.LH# _______ - 1
T =0 POVOVOOY =T 1=y " HT NE=TVE == U
7\29\9' - — 2§§
THz generation v v
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https://www.ipac23.org/preproc/pdf/THPL029.pdf

Lattice agnostic RL - Generalizable RL

BN Quad [ Corr [EE Screen
4 B.....K...... AU I > Used during training, with
,\&;&% ‘ I ‘ I I ‘ 1 randomized positions but
> following order (=DR)

<

>
TTTIT$
\>§
< A 2> Testlattices
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Reinforcement Learning

C. Xu et al, IPAC23-THPL029

Average of 100 tasks, max. 50 steps

Reduction of

Averaged best beam MAE [um
AR-Ch

Position [m -
] performance when used Algorithm
in different lattices
Random
Vanilla-SAC
Fine tuning (FT) - re-training SAC-DR

with new lattice only 2% of the

Tr-Ch |(FL-Ch  FL-Oc
058 || 621 548 930
43 || 154 150 92
86 63 60 67
52 JU 31 31 36

original training samples

How can machine learning help future light sources? - Andrea Santamaria Garcia

/3/5 SAC-DR+FT |

Ch = Cheetah, tensorized optics simulation
Oc = OCELOT (with space charge)
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https://www.ipac23.org/preproc/pdf/THPL029.pdf

Control of the microbunching instablity with RL QAT

Karlsruhe Institute of Technology

Short bunch

A Increased

At Bursting can be controlled with RF modulations
radiation power
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A. Santamaria Garcia et al, IPAC23-WEPAQ018
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https://doi.org/10.18429/JACoW-IPAC2023-WEPA018

Control of the microbunching instablity with RL

Proposed control loop

Schottky diode

analog pulse signal
50 GHz -2 THz

0.5-2.5GeV

1104 m
2.7 MHz rev freq.

Tests end of September

—>

coaxial

KAPTURE-2

Low-latency high-throughput sampling
500 MS/s, 8 channels

Measured latency without
re-training 2.5 us

Feedback system

execute action

Low-level RF amplitude and e (™S

phase modulation control serial

every 6 revolutions

1Gb
ethernet

CPU/GPU
re-train agent —>

HighFlex 2
bunch labeling

Custom modular readout card

fiber, aurora protocol
64b/66b

Xilinx Versal
VCK190

[ decide action

Low-latency RL
inference platform
1.6 Tera FP operations/s

Al engines: feature extraction
and agent inference

ARM processor: slow-control

FPGA: dataflow management

17 How can machine learning help future light sources? - Andrea Santamaria Garcia
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L. Scomparin et al, IBIC'22-MOP42

W. Wang et al, doi:
10.1109/TNS.2021.3084515

T. Boltz, doctoral thesis

FLS'23


https://publikationen.bibliothek.kit.edu/1000140271
https://ibic2022.vrws.de/papers/mop42.pdf
https://ieeexplore.ieee.org/document/9442681/

Damping of transverse oscillations ﬂ(IT

P rOOf-Of- p rl n CI p | e Karlsruhe Institute of Technology
BPM signal KAPTURE-2 HighFlex 2
' signal digitization bunch labeling

o

—>

coaxial

Low-latency high-throughput sampling Custom modular readout card
500 MS/s, 8 channels

Bypassing our BBB feedback fiber, aurorag;c;t/%gﬁl
system
Xilinx Versal
, 05-25GeV ! Feedback system R
B execute action

1104 m
2.7 MHz rev freq.

[ decide action

Low-latency RL
inference platform
1.6 Tera FP operations/s

b 3

serial

mpliti
phase mo
ns

Stripline kicker

1Gb
ethernet

CPU/GPU
re-train agent —>

Al engines: feature extraction
and agent inference

ARM processor: slow-control

FPGA: dataflow management
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First RL algorithm online training and running
on hardware in accelerators

i Power supply ==

Highflex
.ﬂ e

/B e 5

Power supply ! !

E*—*—l-s- ‘ \ \ '> e

Splitter
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Reinforcement Learning

Signal to BBB amplifier

KAPTURE |
‘ el ‘/;

Timing signals
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First RL algorithm online training and running ﬂ(l'l'
on hardware in accelerators

. .
= Agent: Vanilla PPO from Stable Baselines 3

= Actor & critic architecture: 8-16-1

= Reward: metric of the beam position (low as possible)
= Observation: last 8 BPM samples

= Strategy:

1. Agent acts during 2048 turns (0.74 ms)
2. Agent stops and is re-trained in a CPU (~2.6 s)
3. New weights are sent to Versal board and agent starts again

= NNs coded in Versal AIE
= Only forwad pass

le6 le6
—— Untrained agent 31 —— Greedy agent

N e 301 TR Achieves (sometimes
- — 5 epades Damping improves _ 25 surpassing)
= \ — areeayagene | With €xperience: the 2 0l performance of FIR
£ 2] : - ing! 5 -
: external kick | System is learning! s filter control
3 2 o] (commercial solution)
= T

1 0.0

o5

T T T . T
0 500 1000 1500 2000 ! ' y y y .
Turns 0 20 1000 1300 2000 L. Scomparin
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First RL algorithm online training and running ﬂ(l'l'
on hardware in accelerators

Reinforcement Learning
Step 99

2.0 =100
= —200
E 1.5
E
c =300
=] —
= g
g E. —400
E o i
= £ —500
o -4
E
R —600
2

—T00
=800
0 250 500 750 1000 1250 1500 1750 2000 0 20 40 60 80 100
Time [turns] Time [turns]
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First RL algorithm online training and running S(IT
on hardware in accelerators

Reinforcement Learning

Step 99

=400
-600
—B00

*IDUGJ

Reward [arb]

—1200 -

Horizontal BPM position [ark]

-1400

Extraction septum on
) 250 500 750 1000 1250 1500 1750 2000 o 20 40 &0 80 100

Time [turns] Training steps
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23

Outreach efforts

Creation of the Collaboration on
Reinforcement Learning for

Autonomous Accelerators (RL4AA)
https://rl4aa.github.io/

= Kick-off with workshop organized at KIT Feb. 2022
> https://indico.scc.kit.edu/event/3280/overview
> Expert lectures on reinforcement learning
» Real application to accelerator tutorials
» Advanced discussion sessions

= Registration for Feb. 2023 open!
> https://indico.scc.kit.edu/event/3746/

ML tutorials

= https://github.com/RL4AA/RL4AA23
= https://github.com/ansantam/2022-MT-ARD-ST3-ML-workshop
= https://qgithub.com/aoeftiger/ TUDa-NMAP-14

How can machine learning help future light sources? - Andrea Santamaria Garcia

KIT

Karlsruhe Institute of Technology
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https://indico.scc.kit.edu/event/3280/overview
https://rl4aa.github.io/
https://indico.scc.kit.edu/event/3746/
https://github.com/RL4AA/RL4AA23
https://github.com/ansantam/2022-MT-ARD-ST3-ML-workshop
https://github.com/aoeftiger/TUDa-NMAP-14

KIT

Karlsruhe Institute of Technology

AT IBPT

Karlsruhe Institute of Technology Institute for Beam Physics and
Technology

Dr. Andrea Santamaria Garcia
Al4Accelerators team leader

Thank you for
your attention!

What questions do you
have for me?

andrea.santamaria@kit.edu
https://twitter.com/ansantam
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam

(we are hiring!)
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