
SOFTWARE PRACTICES USED IN THE ESO VERY LARGE TELESCOPE
CONTROL SOFTWARE

F. Carbognani, G. Filippi, European Southern Observatory, Munich, Germany

Abstract

In 1999 the first 8-meter telescope of the VLT program
is opened to the scientific community. This paper reports
on the experience done in applying software engineering
practices to the VLT Control Software.

1 INTRODUCTION
The VLT software, now operational at the ESO Paranal

observatory in the Atacama Desert, Chile, can be divided
into three major areas:

• The VLT Common Software that provides
common features used by all developments.

• The Telescope Control Software (TCS).
• The Instrument Control Software, one for each of

the 12 instrument, builds on a common frame.
The VLT Software has also been reused for

refurbishing other ESO telescopes in the La Silla
observatory and it will be used for the remaining VLT
instruments, the VLT Survey Telescope (VST) and the
VLT-Interferometry (VLTI).

The VLT Software development has involved about
100 software people, roughly 30% ESO and 70% from 30
different institutes and companies, and corresponds to
about 200 man-years, 50% done by ESO and 50% by
externals.

It is possible now to report about the application of
Software Engineering practices as they have been
announced at the beginning of the project [1].

2 DEVELOPMENT ENVIRONMENT
The key rules have been:
• Dividing the whole development into software

modules. Each module is a set of files organised in a fixed
directory structure and has a unique name. Figure 1 gives
the modules divided by VLT Common software and
applications.

• Structuring make usage: a Makefile for each module
defining what has to be processed, and a centralised
vltMakefile taking care of what specific to operating
systems and languages and providing a set of standard
actions (generation of automatic dependencies, clean,
man pages, install).

• Homogenising programming style by applying
Coding Standards, Templates, and Naming Conventions.
This makes support easier and allow better code sharing
between people.

• Selecting and supporting the development tools
(GNU, tcltk, etc.)

• Standardising the UNIX environment set up of every
VLT user, both development and operational ones, and
keeping trace of the configuration files needed to
customise the operating system (OS) and tools.

• Defining a development environment based on user
areas, integration areas and released code area. The
current active areas are pointed by environment variables,
the usage of make and the UNIX environment set up are
done accordingly.

• Packing and distributing the development tools and
the VLT Common Software as a "commercial" product,
i.e., planned releases, twice a year, installation
instructions covering from the OS to the VLT code,
manuals. In Figure 2, the Lines of Code (LOC) of the
latest releases.

Making better: maintaining the rules, providing more
tools for automatic check, using systematic code review
(done in the past, but on a sporadic way).

Figure 1 - Modules on the VLT Software Archive

Figure 2 - LOC for VLT Common Sw

International Conference on Accelerator and Large Experimental Physics Control Systems

320

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

3 CONFIGURATION MANAGEMENT
The two pillars of the VLT Software Configuration

Management are the code archive and the VLT Software
Problem Report (VLTSPR) procedure.

The code archive supports code configuration during
development AND integration on geographically
distributed sites. The design keys have been:

• The configuration item is the software module. This
allows a reasonable but still simple flexibility in system
configuration (a system is made up of 15 to 100 items,
identified by their name and version, corresponding to
2000 to 20000 files).

• There is only one central archive. Users get local
copies using a simple client server mechanism. In projects
as we do, typically there is only one person at time
dealing with a specific part. A modification must be
started, implemented and tested, then archived. During
this period the module is LOCKED.

• To allow experiments or patches on older versions,
branches are also supported.

The code archive is implemented using RCS and a set
of ad hoc programs and scripts (cmm) implementing the
client-server interaction and the user interface. The
archive is physically located at the headquarters and used
also by teams in Chile and several institutes.

Figure 3 gives the accesses per month for modification
and for read only mode. Currently approximately 60% of

the accesses are from outside the headquarters and 25%
from non-ESO sites.

The central archive is not only the software repository,
but it is also a management tool. In archiving a module,
the developer tells all the other people "Hey, there is a
new CONSISTENT and TESTED set of files that you can
use!". This is very useful when several teams operating
on different time zones do development and integration.
Comparing the current configuration against the status of
the archive, the integration responsible can see that new
items have been produced. A glance to the comments
stored by the developer to qualify the newly archived

version is normally enough to decide whether to take the
new version or not. In this way NTT, VLT, instruments
have been developed, integrated and commissioned on
top of mountains at 2500 m in the middle of a deserts, but
involving people in several countries on both sides of the
ocean.

The VLTSPR System is meant to be used by both
internal and external users of VLT software to report
errors in code or documentation or to propose a change.
VLTSPR is build using the commercial tool Action
Remedy (c) and has a Web Browser interface. This is the
basic workflow of the system:

• Problem submitted, depending on the subject, some
people are notified immediately

• The SPR is discussed in the Software Configuration
Control Board meeting and a Responsible Person is
appointed for the problem

• Responsible works on problem
• Responsible can close the SPR (must add a final

remark on it)
• People can add comments any time
At present there are about 120 names in the user

database, 75% ESO users (both Europe and Chile), the
remaining 25% from 13 external projects, some project
have more sites.

In figure 4 the trend of the SPR archive over the years.
The number of open SPR has been always kept under a
physiological limit (about 500) that corresponds to what
we are able to treat between two releases.

Figure 5 reports the distribution of the SPR per area in
’97 and in ’98.

As the project evolved, SPR concerning the common
software are decreasing, while the one for the application

Figure 3 - Accesses to VLT Sw Archive

Figure 4 - Cumulated SPRs

Figure 5 - SPRs per Different Areas

321

part are going up, sign of the integration activity taking
place.

Making better: we are developing a better client-server
mechanism and we plan to make the cmm software
available on the public domain. No further developments
planned on VLTSPR.

4 DOCUMENTATION
The documents produced according to the VLT

Software Management Plan are of the following types:
PLA for plans (management, configuration management,
tests), SPE for specifications (requirements, functional,
design description), VER for test documentation, MAN
for manuals, TRE for technical reports, SOW for
statement of work, PRO for procedure (standards), INS
for instruction (standards)

Documents have been developed mainly using
FrameMaker and the files are stored on central repository.
Configuration Control is done manually. Paper copies are
managed by the central VLT Project Archive. In addition
there is an on-line documentation in form of man-pages.
Every function, command, utility has its own man-page
that is part of the source file and is automatically
extracted by the make man command.
Practically the totality of the specifications have gone
through at least one formal review (draft distributed to a
panel of reviewers, written comments from reviewers,
review meeting for discussing the comments, document
approval or new loop).
Figure 6 shows the total amount and the A4 pages per
document type and the number of manpages.
 It is possible to notice that we concentrated our effort on
the specification and on the final documentation, tests
documentation is reduced because a relevant part of the
software is covered by automatic testing. The number of
man-pages can be read as the "functional points".
The VLT Software documentation is available from
http://www.eso.org/vlt/vltsw

Making better: due to time and resource constrains, we
did not use the WEB technology for on-line
documentation. It has to be done in the next future.

5 AUTOMATING TESTING
As "what cannot be observed cannot be controlled", what
cannot be tested cannot be successfully delivered. An the
only way to deal with testing is to have automatic testing
that implies:

• The test execution has a standard interface so
everybody can run everybody else tests.

• The test command prepares the environment set-up,
executes the test(s), filters out variant data (dates, time,
host names), compares results against reference and
provides FAILED or PASSED.
To support automatic test on the VLT Software a Tool for
Automated Testing (tat) has been developed.

Figure 7 show the present Automatic Test coverage on
the VLT Common Software.

Making better: increase the number of modules using
automatic tests, improve tat tool to handle more situations
and better stubs.

6 FUTURE DEVELOPMENT
Beside maintaining and improving the existing

procedures, our next goals are:
• Use RUP/UML as analysis and design methodology.

A pilot project is on going [2]
• Support Java
• Use WEB as on-line documentation tool
• Use more PC-based tools
• Base test procedures on "use cases"

7 REFERENCES
[1] G.Filippi, “Software Engineering for ESO's VLT

project”, ICALEPCS '93.
[2] G.Chiozzi J.M.Filgueira, "Real-time Conrol Systems:

a One Document OO Development Process",
ICALEPCS99

Figure 6 - VLT Sw Documents Statistics

Figure 7 - Automatic Test Coverage

322

