
USE OF OBJECT ORIENTED INTERPRETIVE LANGUAGES
IN AN ACCELERATOR CONTROL SYSTEM

N. Yamamoto, A. Akiyama, S. Araki, T. Katoh, T. Kawamoto,
I. Komada, K. Kudo, T. Naito, T.T. Nakamura,
J-I. Odagiri, Accelerator Lab., KEK, JAPAN
M. Kaji, Mitsubishi Electric Co. Ltd., JAPAN

N. Koizumi, Mitsubishi Space Software Co. Ltd., JAPAN
M. Takagi, S. Yoshida, Kanto Information Service, JAPAN

T. Kitabayashi, K. Yoshii, Mitsubishi Electric System & Service Engineering Co. Ltd., JAPAN

Abstract

In a control system for a high energy accelerator, like
KEKB, quick application development/modification is re-
quired. This short turn-around time is especially important
during a commissioning of the accelerator. In KEKB con-
trol system, we have achieved this goal by introducing in-
terpretive programming languages, Python and SAD, in the
control system. SAD is the language originally developed
at KEK for accelerator lattice design. The other, Python,
is the language system distributed as a public domain soft-
ware.

These languages are used not only for prototyping ap-
plication but also for developing application software used
in daily operation. These languages are easier to learn and
safer to use compared to compiled languages such as C or
C++. Interface to the appropriate widget library from these
interpretive languages, such as Tk/gtk+ widget greatly re-
duces effort needed for developing graphical user inter-
faces.

Modular and object oriented features in the languages al-
low incremental development of application software. This
method benefits reliability and maintainability of the soft-
ware.

Authors will discuss productivity, performance and
maintainability of the system based on experiences in the
KEKB control system.

1 KEKB CONTROL SYSTEM

KEKB[1] is an asymmetric electron-positron collider for
B-meson physics built in KEK, Japan. It started its opera-
tion on December 1st, 1998 after 5 years of construction.
The control system for KEKB accelerators[2] were built
using EPICS Toolkit[7] as a framework of the control sys-
tem.

The core of EPICS toolkit is a runtime database run-
ning on VME single-board computers and a network
protocol, called channel access, to exchange data be-
tween computers. On the top of channel access, EPICS
provides various tools to construct a control system.
The tools include DM/EDD (Display Manager/Display
Editor), MEDM(Motif based Display Manager /Editor),

ALH(Alarm Handler), AR(Data ARchiver). These tools
can cover 95% of needs in the most control systems. To ful-
fill the remaining 5% of needs, you may take one of three
ways:

1. case 1: Just ignore the remaining 5%.

2. case 2: Extend functionality of existing tools by your-
self (and bring it back to the collaboration).

3. case 3: Create new tools or applications for your own
needs

Of course, we cannot take the first way. Usually, the re-
maining 5% is an essential part of the control system.

If we take the second way, there may be several disad-
vantages.

1. Synchronization: Modification of the tool can be made
at several places, merging process can be additional
load. Use of CVS can reduce the load, however, the
integrated software should still be tested.

2. Fat software: If you merge every features developed
in the collaboration, which may be too specific to the
particular project, the tool may grow too large. When
one functionality is found useful for general use, this
should be integrated with the tool, of course.

3. Longer development time: All EPICS applications are
written in C/C++. Only expert of these languages and
X library can develop these applications. A need of
the communication between users(an operator or an
accelerator physicist) and a programmer(C/C++ ex-
pert) adds another overhead .

So we actually chose the third way. As discussed above,
it is not feasible to develop new application from scratch
using compiled languages like C/C++. Experience in the
TRISTAN[3] control system suggested us to use ”two lan-
guages” development system.

International Conference on Accelerator and Large Experimental Physics Control Systems

600

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

2 TWO LANGUAGES SYSTEM

2.1 Nodal and PCL in the TRISTAN control sys-
tem

The TRISTAN control system uses NODAL[4] and
PCL(Process Control Language)[5] for software develop-
ment. NODAL is an interpreted language with Basic-like
syntax and features specific to distributed control system.
PCL is a compiled language with Fortran-like syntax and
extensions for real-time system. PCL is used mainly to de-
velop data modules in Nodal to access hardware. Most of
user interfaces and applications in TRISTAN control sys-
tem were written in NODAL mainly by accelerator physi-
cists.

This kind of ”two languages” system is widely seen in
the successful computer system[6]. Unix, for example, has
shell scripting languages and C. Elisp and C in the EMACS
is another good example.

This observation suggests that successful user extend-
able system has (at least) two programming languages, an
interpreted language and a compiled language.

2.2 modularity

In two languages system, a compiled language is used to
extend capability of interpreted language. This extension
is modular so that user can add or delete this extension
at anytime. The interpreted languages are used as glue to
combine these modules. This approach is also useful to
avoid a fat application which includes everything(Fat soft-
ware). Modular design of software also makes develop-
ment/test/maintenance easier.

2.3 User participation

Another advantage of ”two language” system is participa-
tion of users. An interpreted language usually has simpler
syntax and is easy to learn and use for the people includ-
ing NON-professional programmers. In KEKB, application
programs which needs knowledge of accelerator physics
are written by accelerator physicists. In this case, there is
large overlap in users of an application and its developer. It
reduces overhead of communication between the user and
the developer. They use mostly SAD[8] language because
they use it for their research anyway.

Python is used to develop an application where an ac-
celerator model is not required. Hardware engineers and
accelerator operators can develop there own application to
simplify their own daily tasks. Clean and simple syntax of
python makes learning it easier. Although there are sev-
eral textbooks on python in English, only one textbook[9]
on Python is available in Japanese. This text book and a
python tutorial translated into Japanese, which is available
on WWW, were used in KEKB. Self-training with these
text is sufficient to start using Python. User can also find

SAD Python medm java
119 24 12 1

Table 1: Number of applications registered in the KEKB
control program launcher.

3 USE OF EXISTING RESOURCES

It is also important to use existing resources as much as
possible to reduce cost of application development. SAD,
an accelerator modeling code with Mathematica like script
language, is a valuable resource we have. We can also find
variety of OPEN SOURCEsoftware and free software on
the internet. We have developed extensions to access these
resources from SAD and Python when these APIs do not
exist. APIs to CA library and Tk widgets are examples of
these extensions. [Note that a library to access Tk widget
is a standard part of Python. Python includes interfaces to
other standard libraries as well.]

4 PERFORMANCE

Execution time of program written in an interpreted lan-
guage is generally slow compared to one in the compiled
language. In the KEKB control system, interpreted lan-
guages are used to develop graphical user interfaces. Most
CPU hungry part are written in C or Fortran as a module.
Overhead due to interpreted languages is not significant in
most applications. We will show an example of perfor-
mance improvement with this approach in section 6.

5 PRODUCTIVITY AND
MAINTAINABILITY

User participation into the development of the system in-
creases productivity in the application development for the
control system. Table 1 shows numbers of programs reg-
istered into one of the main task launchers in KEKB con-
trol system[Figure 1]. Most of applications are developed
since Dec. 1st, 1998. These applications are used in the
commissioning and improved by the users. The applica-
tion may grow with understanding of the accelerators.

Only disadvantage of this approach is lack of proper doc-
umentation on these applications. An application can be
changed so quickly and users(= authors) spend their time
for the commissioning rather than writing documentations
of the software.

Use of CVS for version control of the software is en-
couraged, to avoid accidental corruption of the software.
Frequent change of software may introduce a new bug in
the software. CVS repository can be used to track when
this bug was introduced. And it is possible to go back to
the older version when it is necessary.

good examples of python code in its standard library mod-
ules.

601

Figure 1: KEKB control program launchers. The left one is
MEDM application and the right one is a SAD application.

6 EXAMPLE OF SOFTWARE
IMPROVEMENT IN THE TWO

LANGUAGE SYSTEM

In this section, we describe how we could improve perfor-
mance of our application.

A Python module, arr.py, is a program to read archived
data from EPICS archive program. It reads a data file and
stores data into Python object. Using Python library, user
can manipulate archived data and create outputs, includ-
ing graphs. We also created an application, arrplot.py, as
a generic archived data retriever with graphical user inter-
face, on top of arr.py.

The first version of arr.py was developed as a pure
Python program. Although it was useful for small data
files, it was very slow. Main reason of this slowness was
found to be a number of function calls in Python. The
arr.py reads a file line by line and calls a function for each
line. Execution profile[Table 2 upper] shows that a call of
a single function, readFile(), in arr.py dominates the total
execution time.

We have converted Python function readFile() and func-
tions used in this function into C-extension. Execution pro-
file of arr.py with the C-extension is shown in the lower part
of Table 2. An archived datafile of 6MB was used to mea-
sure this profile. Result shows arr.py with C-extension is
almost ten times faster than the arr.py of Python only ver-
sion[Upper table].

7 CONCLUSION

Using the lesson we learned from the TRISTAN control
system, we adopted ”two languages system” in the KEKB
control system. It uses both compiled and interpreted
languages. This approach allows non-professional pro-
grammers to develop applications used in the operation of
KEKB accelerators and increases number of application
developers and number of developed applications. On the
other hand, it causes lack of proper documentation of each
application. Python provides a way to embed a documen-

ncalls tottime cumtime function
1 0.000 0.000 init

120566 26.770 39.930 addData
141534 79.550 119.480 do line

1 29.050 148.530 readFile
23 0.000 0.000 init
1 0.240 148.770 arr

120566 13.160 13.160 addData
1 0.020 150.870 arr.arr(’sample.data’)

ncalls tottime cumtime function
1 16.780 16.780 readFile
1 0.000 16.780 arr

23 0.000 0.000 init
1 0.000 0.000 init
1 0.040 17.280 arr.arr(’sample.data’)

Table 2: Profile of arr.py with (lower) and without(upper)
C-extension.

tation of each unit(module, class, function) in itself. Users
can access these documentation texts using an attribute,

doc , at run-time. Encouraging use of this mechanism
may improve the situation. It is also shown that a modu-
lar program ming style allows efficient improvement of the
system with the minimal effort.

8 REFERENCES

[1] “KEKB B-Factory Design Report”, KEK Report 95-7, Au-
gust 1995

[2] T. Katoh et al., “Present Status of the KEKB Control Sys-
tem”, ICALEPCS ‘97, Beijing, China, November 3-7, 1997

[3] S-I Kurokawa, et al., “The TRISTAN Control System”, Nucl.
Instr. and Meth., A247, (1986) pp. 29-36. ; T. Mimashi et
al., “The rejuvenation status of TRISTAN accelerator control
system”, Nucl. Instr. and Meth., A352 (1994) 128-130.

[4] M.C. Crowley-Milling and G.C. Shering, “The NODAL Sys-
tem at the SPS”, CERN 78-08

[5] “PCL Manual”, Hitachi Limited.

[6] John K. Ousterhout, “Scripting: Higher Level Programming
for the 21st Century”,
http://www.scriptics.com/people/john.ousterhout/scripting.html

[7] L. Dalesio et al. , “The Experimental Physics and In-
dustrial Control System Architecture: Past, Present,
and Future”, Proc. ICALEPCS, Berlin, Germany, 1993,
pp 179-184. W. McDowell et al.:“EPICS Home Page”,
“http://epics.aps.anl.gov/asd/controls/epics/EpicsDocumen-
tation/EpicsGeneral/”

[8] “SAD home page” at:
“http://www-acc-theory.kek.jp/SAD/sad.html”

[9] M. Lutz, “Introduction to Python”,O’Reilly Japan Inc, Japan
1998, translated from “Programming Python”, O’Reilly &
Associates, Inc. USA, 1996

[10] ‘Python Home Page’, “http://www.python.org/”

602

