
INTEGRATING ACOP WITH UNIVERSAL GUI FOR ACCELERATORS

S.Dasgupta, R.B. Bhole & Sarbajit Pal
Variable Energy Cyclotron Centre

1/ AF Bidhan Nagar, Calcutta 700 064

Abstract

The Java-based universal sharable GUI development
work[4] proceeded with incorporation of MSChart
ActiveX so far, for graph displays of accelerator
parameters. To gain from the accelerator control oriented
features of the ’Graph Control’ devised at ACOP
(Accelerator Component Oriented Programming)
workgroup [3], acop.ocx has been integrated in the
"Universal MMI Applet" container. The ’device name’
property is resolved at a level just below, and a
corresponding GUI is activated. The selected GUI object
has properties and methods to make transactions with the
devices through a compliant dll. The dll in our case, is
being developed to facilitate distributed data access by
communicating with an Active Server Page running on
the data base server, containing the control system
dynamic data[2].

1 INTRODUCTION
An effort to integrate ACOP ActiveX control in our

previously made applet prepared for the development of
Universal MMI, has been undertaken.

Full incorporation of ACOP into a Microsoft J++
container appeared to be very restricted as yet. The major
part of the work reported here, was to incorporate
connectivity between our Universal MMI and the control
database. In the ACOP methodology, an ACOP.DLL is
necessary to interface the control database or data source
to the application client. The data acquisition DLL’s to
access the device data from a remote data server machine
have been implemented by using UDP sockets. Dynamic
updating of data at the client site is also provided in this
process. While ACOP compliance in the interfaces of
these DLLs are being prepared, these have been used in a
VB document and data access from an Universal MMI
based on this VB document, instead of a Java applet, are
carried out.

Many of the method calls in the rendition part of
ACOP need variant type parameters. The Java VARIANT
class of Microsoft in VJ++ could not be successfully used
for passing arrays of any kind. The Universal MMI based
on the Java language, for platform independence, could
not therefore be integrated with ACOP, for graph plotting,
as planned. Instead the data rendition part of the ACOP
has been also used in this VB document and accessed
from a browser client.

2 DATA TRANSACTION SCHEME
Our database is kept in an Oracle server, residing in a

dedicated NT Machine as shown in Figure 1.

Figure 1: Client Server NW Scheme

 The client browser accesses the data from the server
database through a UDP transaction. For the client sever
communication, a WinSock control is used to connect to a
remote machine and exchange data using User Datagram
Protocol (UDP) and this control doesn’t have a visible
interface at run time. Creating a UDP application is
simpler because the protocol doesn’t require an explicit
connection. To send data between two controls, the
RemoteHost property is set to the name of the other
computer. The RemotePort property to the LocalPort
property of the second control is set and Bind method is
invoked to specifying the LocalPort to be used. Both
computers can be considered "equal" in the relationship,
but the server broadcasts only the parameter values which
have changed recently on a particular port.

Figure 2: Data Transaction Scheme

International Conference on Accelerator and Large Experimental Physics Control Systems

609

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

Figure 3: VB Document based DB access MMI

The scheme (shown in Figure 2) implemented
presently uses the ‘ADO’ (Active Data Object)
component which is the most recent addition. The
previous ‘DAO’ (Data Access Object) allowed
programmers to access the Microsoft Access database
only, whereas ‘ADO’ can access all major databases.
With ‘ADO’ incorporated, the application sees three types
of objects i.e. connection, command and Recordset
objects. These objects establish connection, execute
commands against the database and hold the record
retrieved from the database or the records to be updated
on the databases. The ODBC data source manager in the
Windows Control Panel sets up ODBC data source and
Data Source Name (DSN). In Visual Basic code, an
ODBC connect string is used to establish a connection to
the data source. To access a data source in the code,
‘connect’ string is required by the ODBC driver to locate
and connect to a data source. For accessing ODBC data,
the data source is to be registered using the ODBC data
source manager. The data source in the Windows Registry
makes the information available to applications. The setup
for each ODBC data source varies because each data
source driver requires a different set of information. The
Connect string is used to create a linked TableDef object
that points to data within an ODBC data source. A

Recordset object on the linked database table contains
ODBC data that can be manipulated using the properties
and methods of a Recordset object.

3 ACOP INTEGRATION
ACOP ActiveX component, has been used as a server

component which has enabled using even a smaller size
client. It is found that until the release of Visual Studio 6,
the Java and ActiveX communication is limited to
“string” parameters only. Therefore, an ActiveX
document created in Visual Basic that can run on a
container like Internet Browser was implemented.

The ActiveX document is easy to create and
distribute. The ActiveX Document has been developed in
the Visual Basic Environment from where all parameter
of ACOP could be set and various methods supported by
ACOP could be readily used for on line graphical display
of acquired data. Figure 3 and Figure 4 depict higher level
device parameter group formation and displaying on the
ACOP graph after acquiring the current value from the
central database server.

610

Figure 4: ACOP rendition in Universal MMI

4 CONCLUDING COMMENTS
At the time of this writing, one can not reliably use

any type for a property other than string class. Even
though the Microsoft documentation shows that one can
use other classes, the reality is that only the String class
will allow one to actually use the properties in the
environment that normally supports Java applets and
ActiveX controls.

The client server transaction between client browser
and server application is more versatile and fast. The
quickest response in the local data transaction is achieved
by using ‘ADO’. Whereas, the dynamic graphical display
is ensured by the ACOP control. The used WINSOC and
ACOP control in the web-page if not available at the
client machine can be downloaded dynamically from the
server. Once downloaded on the client site, it is installed
and does not require further downloading unless the
source at the server is modified which provides easy
distribution of the updated application.

This scheme can also be implemented by Client-side
scripting using Visual Basic or Visual Java Script. Even
lighter clients can be implemented by HTML at the client
side and using server side scripting where the internet
server does all the work.

The advantage of platform independence of a Java
applet MMI must wait until full workability of ActiveX
on Java is easily attainable. Until that time, ACOP
ActiveX in a VB document is conveniently used with the
niceties of both. When using ACOP ActiveX, one forgoes
cross platform compatibility because ActiveX is strictly
usable in the Microsoft environment. One can as well use
ACOP in VB environment, where it integrates seamlessly,
if the above constraint is acceptable.

REFERENCES
[1] I.Deloose, P.Duval, H.Wu, "The Use of ACOP Tools

in Writing Control System Software", Proceeding
ICALEPS'97.

[2] Sarbajit Pal, S. Dasgupta, "Advancement Towards
Development of Shareable Accelerator MMI",
Proceeding PCaPAC'99.

[3] Philip Duval, H. Wu, "Using ACOP in HERA Control
Applications", Proceeding PCaPAC'99.

[4] S. Dasgupta, Isamu Abe, "Sharable GUI Objects for
the Operator's Console", Proceeding ICALEPS'97

611

