International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

LINUX AND RT-LINUX FOR ACCELERATOR CONTROL - PROS AND
CONS, APPLICATION AND POSITIVE EXPERIENCE

F. Nedeoglo, D. Komissarov, Department of Physics, Moscow State University, Russia
A. Chepurnov, Institute of Nuclear Physics, Moscow State University, 119899, Moscow, Russia

Abstract

Since 1995 we have actively been searching a
possibility to apply the Linux operating system in particle
accelerator control systems. Linux is a Unix-like
operating system, freely distributed on GNU Public
License (GPL), a development which has been underway
since 1991 by several independent developer-enthusiasts.
At present Linux is a stable operating system with plenty
of possibilities, its popularity is growing fast. To support
man-machine interface, we have used this operating
system at top level in control systems for several projects
of small electron linacs. In view of development
convenience it would be desirable to use this operating
system at a front-end real-time level, too. Therefore we
looked for a possibility of creating applications under RT-
Linux (real-time extension to Linux).

1 INTRODUCTION

PCs running under the Linux operating system (OS)
have become very popular among developers of control
systems (cs) for particle accelerators. The object-oriented
cs TACO, for example, supports Linux OS [1]. The
reason is that a PC together with Linux OS provides an
adequate level of computational resources and reliability
whereas the price-to-performance ratio is acceptable.

Most of the widely spread commercial software for PCs
is not reliable enough and resource consumption from the
stand-point of control applications is not acceptable,
except for a few operating systems developed especially
for control and real-time.

The Linux OS presents an attractive alternative to other
OSs traditionally used in c¢s. Linux is dynamically
developing as a modern Unix-like OS. It is freely
available together with its source codes and well-
documented. The main features of Linux are POSIX
compatibility, GPL agreements and good network
connectivity.

2 LINUX AT TOP LEVEL OF A CS

2.1 Upgrading of RTM injector cs

We used Linux OS to upgrade a rather old cs of the
race track microtron (RTM) injector for the first time in
1996-97 [2,3]. The cs was built as a star-shaped network

of LSI-11 compatible minicomputers. It consisted of four
levels with six single-board minicomputers (Figure 1).
The equipment of the front-end level was connected to
the control stations via a few CAMAC crates. The
network concentrator machine and the control stations
have no any external devices to store control programs.
All computers of the cs communicated with each other
through the network concentrator via optically isolated

RS-232C links.
T

4. SERVICE
LEVEL

3. NETWORK
CONCENTRATOR

2. CONTROL ™"

. CAMAC CAMAC CAMAC cAMAC

1. FRONT-END E I I I
LEVEL

‘ front end devices ‘ ‘

Figure 1. Upgrading of RTM injector control system

The operational software of the control stations was
developed as a real-time system with digital feedback
loops, control algorithms and re-entrant data acquisition
drivers. Some computers of the service level maintained
the man-machine interface and the database. To load the
software into the control stations and the network
concentrator the minicomputer (MERA) equipped with a
hard disk drive was used.

During the upgrade process (Figure 1), all the
computers of the service level and the network
concentrator were replaced by a single PC running under
Linux OS. The software developed for Linux OS emulates
the functionality of the old top level completely. It allows
us to load and use local software of the control stations as
is. Several computers of the old generation were removed
from the cs, which improved the reliability, reduced the
maintenance time and increased the comfort of the
operator. In addition, the Linux software enables us to

520

control or watch the control processes remotely via
TCP/IP.

2.2 Cs for compact electron linac

A new cs was developed for the new small cw linac. It
was the first accelerator, which belonged to a new family
of industrial cw linacs [4]. The development of the cs had
two stages. During the first stage of the cs development,
flexible modern DAQ boards were installed in a
conventional PC to control subsystems of the accelerator.
In the second and final stage the cs will be based on CAN-
bus to communicate with intelligent controllers belonging
to the family of "Smart Devices" [5] which form the front-
end level. The Linux kernel driver for the CAN-bus ISA
adapter has been developed. We selected the DeviceNet
high level protocol for the CAN-bus and developed a
DeviceNet protocol stack for Linux OS [6].

The application software of the top level of the cs is
based on the distributed shared memory (DSM)
architecture. Applying the DSM approach provides
independence of program modules from each other. It
allowed us to use the same top level software during the
both stages. The top level is implemented on the PC under
Linux OS. The application software of the top level was
designed with the help of GNU development tools only.
The GNU C compiler (gcc) with a standard GNU C
library (gnu libc) and the LessTiff widget set (Motif 1.2
compatible) were used.

3 REAL-TIME TASKS UNDER LINUX

The Linux scheduler is optimized for the balancing of
response time and throughput [7]. The execution time of
the process depends on the system load and the behavior
of other processes in a complex fashion. Furthermore, loss
of hardware interrupts may occure when Linux disables
interrupts during the execution of critical kernel code
segments. These reasons make Linux unsuitable to
implement control algorithms, which require a predictable
system response time. But there are decisions and projects
underway aimed to improve Linux to be applicable for
real-time (rt) tasks. The most known and widespread of
them is Real-Time Linux or RT-Linux [8]. RT-Linux is
based on an approach where a small rt kernel coexists
with the usual Linux kernel. The rt processes are
implemented as light-weight threads which are executed
in their own address space. The Linux kernel operates as
rt process with the lowest priority using a virtual machine
layer in RT-Linux. Initially all hardware interrupts are
handled by the rt kernel and are passed to Linux tasks
only, if there are no real-time tasks to run. When Linux
disables interrupts the emulation software (that was added
to the Linux kernel at RT-Linux installation) will queue
interrupts that have been passed on by the real-time
kernel.

The rt kernel provides only those basic rt services
which Linux can not provide. There is no support for data

displaying, network access and other complex tasks in
RT-Linux. Thus, a rt application consists of two parts.
The first one is the rt task which incorporated in the
loadable kernel module that implements the rt algorithm.
The second part represents the Linux user process that
takes care of functions that are not time critical. The rt
tasks and Linux user tasks communicate through lock-free
queues and shared memory. Lock-free queues are
organized as FIFO (First In First Out) queue and are
accessible by a Linux process via POSIX system calls
such as read/write/open/ioctl. Shared memory is
accessible via the POSIX mmap call.

[Spy Application]
) [
memory FIFO

Linux User
Memory Space

Linux Kernel
Memory Space

Real-Time Algorithm

[N

CAN-bus Hardware
Abstraction Functions

RT-T.inux . .

Kernel
Scheduler

‘ CAN-bus HARDWARLE ‘

Figure 2. Real-time CAN-bus software module.

A skeleton of the real-time software module for the
CAN-bus adapter was designed to try to use RT-Linux at
the front-end level. The central idea of this software
module is to implement the control algorithm in such a
way that it runs independently from the top level software,
but it is possible to control the flow of it and observe the
data it processes.

The rt software module for the CAN-bus consists of a
set of functions to work with the CAN-bus adapter, of the
implementation of the particular rt algorithm and of a
"spy" application. The functions to work with the CAN-
bus adapter look like POSIX 1/O «calls (ie.
read/write/open/ioctl) and are used by the rt algorithm to
access the CAN-bus network. They form a software layer,
which hides low-level operations with the CAN-bus
adapter from the rt algorithm. The implementation of the
real-time algorithm together with the CAN-bus hardware
abstraction functions are integrated into the loadable
kernel module which works in kernel memory space. The
"spy" application is an ordinary Linux process that
transfers data from the shared memory to the top level
applications or displays this data on the screen. It works in
user memory space. The flow of execution of the rt
algorithm is controlled by the “spy” application via the
FIFO. It should be noted that the "spy" application does
not change data in shared memory that are processed by
the rt algorithm. So the shared memory acts as a
"window" through which the "spy" application observes
data being processed.

The DeviceNet application library allows to design a rt
CAN-bus module which can access the CAN-bus as a

521

node of the DeviceNet network. But additional research of
compatibility between the RT-Linux and DeviceNet
application library should be done to apply the DeviceNet
rt module in a real control task.

4 PROS AND CONS

Our four years experience has shown, that Linux OS
provides a level of sufficient reliability and productivity to
implement a man-machine interface, a client-server, a
network and control applications. A capability of
programming software for top level and real-time tasks
(with the help of RT-Linux) allows to use Linux OS at all
the levels of the cs where OS is needed. It is possible to
point out good connectivity with different types of
networks and network file-systems among other positive
features of Linux. Linux provides a necessary set of
development tools and program components to develop cs
software. There is a wide spectrum of compilers, cross-
platform libraries and tools to develop application
software for this OS.

There is a number of DBMSs available for Linux OS
which could be chosen to implement a database for the cs.
PostgreSQL is well known and is a full-function DBMS
available freely for Linux. Several commercial vendors of
DBMSs have declared support of Linux OS by their
products and some of these DBMSs are used in the cs
under Linux already [9].

CORBA (Common Object Request Broker
Architecture) is one of the object-oriented environments
for distributed systems which provides the ability to build
distributed applications, running on heterogeneous
systems. CORBA is considered a promising technology
for cs development [10,11]. There are some CORBA
implementations for Linux both commercial and freely
distributed. We have got some experience with MICO
[12], which is an implementation of the CORBA 2.1
specification with GPL license agreements. However, it is
necessary to make additional researches to find out MICO
feasibility.

However, Linux OS still has gaps in some fields of the
application software in spite of growing support by the
software manufacturers. For example, Linux has no
SCADA-type software. We have not found any ready-to-
use implementation of the DeviceNet protocol stack for
Linux. That is why we have developed our own
DeviceNet application library.

Linux OS is true open software with regard to
distribution as well as to development. The disadvantage
of this fact is that only a few hardware manufacturers
support Linux as target OS for their latest hardware. So,
hardware drivers for Linux appear with some delay.

S CONCLUSIONS

Linux can be a basic operating system to develop
control systems for accelerators in spite of disadvantages

522

the number of which decreases every day. It provides a
number of software tools and has all the required features
to design software such as man-machine interfaces, client-
server network applications, control applications and
databases. To control front-end devices the RT-Linux
extension of Linux could be applied. Whereas a
combination of Linux and RT-Linux provides both a
development and a run-time platform it could be applied
in all the levels of a cs where an OS is needed in.

The rt module to implement rt tasks with access to the
CAN-bus was designed. Testing of this module with a
DeviceNet application library is planned.

An additional investigation and improvement of the
real- time compatibility and CORBA productivity should
be done for Linux OS.

REFERENCES

[11 A.Gotz, W-D.XKlotz, et al. “TACO: An object
oriented control system for PCs running Linux,
Windows NT”, CD-ROM Proc. of PCaPAC,
October, 1996, DESY, Humburg, Germany.

[2] A.S. Alimov, A.S. Chepurnov, et al., "Perfomance of
the 6 MeV Injector for the Moscow Racetrack
Microtron.", Nucl. Instr. Meth. A326 (1993) 391.

[3] A.S. Chepurnov, 1.V. Gribov, et. al., " Moscow
University Racetrack Microtron Control System:
Ideas and Developments", Proc. of ICALEPCS
(Tsukuba, Japan, KEK, 11-15 Nov., 1991) Tsukuba,
KEK, 1993, pp. 140-142.

[4] A. Chepurnov, A. Alimov, et. al., "Control System
for New Compact Electron Linac.", These proc.

[5] A.S.Chepurnov, A.A.Dorochin, K.A.Gudkov,
V.E.Mnuskin, A.V.Shumakov, “Family of Smart
Devices on the base of DSP for Accelerator
Control.”, Proc. of ICALEPCS, W2B-d (Chicago,
[llinois USA,1995).

[6] A. Chepurnov, D. Komissarov, F. Nedeoglo, A.
Nikolaev, "DeviceNet Implementations under Linux
for Use in Control System of a Particle Accelerator."
These proc.

[71 J. Epplin, "Linux as an Embedded Operating
System", http://www.embedded.com/97/fe39710.htm

[8] RT-Linux Manual Project, http://www.rtlinux.org/
~rtlinux/manual/R TLManual/RTLManual.html

[9] A.Yamashita, T.Fukui, M.Kodera, T.Masuda,
R.Tanaka, Mikazuki, “RDBMS on Linux for
accelerator control”, Proc. of PCaPAC’99

http://conference.kek.jp/PCaP AC99/cdrom/paper/pos
ter/pS1.pdf

[10]S. Hunt, B. Jeram, M. Plesko, C. Watson, "The
Implementation of an OO Control System API with
CORBA.", Proc. of ICALEPCS'97, Science Press,
1998, p. 354.

[11]The MICO CORBA
http://www.mico.org/

Compliant ~ System,

