
TINE: An Integrated Control System for HERA

Philip Duval, DESY, Hamburg Germany

Abstract

 Beginning with the 1998 run period, the PC-
dominated control system for HERA is largely in place.
Most elements of the machine are controlled via the
TINE (Three-fold Integrated Network Environment)
data protocol. TINE offers a multi-platform, multi-
protocol, multi-architecture control system. It features
distributed, object-based, plug-and-play, front-end
devices and middle layer servers which communicate
directly with console (and office) computers. Although
the consoles in the HERA control room all run
WINDOWS NT, the HERA front end computers and
servers run a wide variety of operating systems and are
not always PCs. TINE has been invaluable in
integrating the HERA front ends into a working
system. Furthermore, it offers a transparent way to
progressively upgrade existing hardware (as opposed to
replacing everything at once). We describe below
some of the finer points and details concerning TINE
as a control system.

1 INTRODUCTION

 For the most part, TINE defines a data-exchange
protocol, which can be used as the basis for a control
system. As a control system proper, it is “do-it-
yourself” oriented. That is, it is assumed that a
hardware-near data acquisition system is in place on
the relevant front-end devices. At DESY for instance,
the in-house field-bus SEDAC is in common use, as
are the CAN bus and GPIB. There are well-defined
drivers and APIs for each of these, which provide a
hardware IO layer for TINE here. Continuing the “do-
it-yourself” discussion, we note that all redundancy and
fault tolerance should be added where needed.
Furthermore, as the ethernet is the data-exchange
medium, it should be noted that mission-critical
devices should never depend absolutely on
communication with other elements on the ethernet.
Likewise, it should be noted that TINE has been seen
to scale to machines the size of HERA without any
problems.
 TINE follows the traditional “Client-Server”
dichotomy, where the control system elements play
either the role of (and have the characteristics of) a
server or a client. Servers can be attached to hardware
(Front End Computers – FECs) or can provide middle
layer services. They have unique names and addresses
and are known on the net via database or name server
(i.e. they do not broadcast their services). Clients are
“anonymous” and can exist in multiple instances
anywhere on the network. By this, we mean that

clients are nowhere entered in a database, and several
clients can appear bearing the same name. (Each
computer on the ethernet must of course have a unique
address). Clients find Servers by querying the
equipment name server. Finally, TINE is not database-
driven, and does not require any central database for
configuration.

2 THREE-FOLD INTEGRATION

 Perhaps the most distinguishing feature about TINE
is its integration of client and server components of
vastly different networking environments. To begin
with, TINE is a multi-platform system, running on MS-
DOS, Win16 (Windows 3.X), Win32 (Windows 95,98,
NT), most UNIX machines, VAX and ALPHA VMS,
and VxWorks. TINE is also a multi-protocol system to
the extent that IP and IPX are both supported as data
exchange protocols. Finally TINE is a multi-control
system architecture system, allowing client-server,
publisher-subscriber, and producer-consumer data
exchange in any variation. We shall describe these in
more detail below.

2.1 Multi-Platform

 TINE runs on a number of platforms as illustrated in
the table below. At HERA, the de-facto console
platform is Windows NT (Window 3.1 in earlier
years). All manner of front-end platforms are in use,
however the individual sub-system laboratories (e.g.
the RF group) generally stick to their preferred
platform for all sub-system components. Note also that
by allowing a heterogeneous system, expensive front-
end hardware can be used where warranted (for
mission-critical devices) and inexpensive hardware
used elsewhere. Furthermore a systematic, piecemeal
upgrade of a control system is possible, since TINE
will run fine on older systems such as VAX-VMS and
MSDOS as well as the more modern systems such as
Window NT, Solaris and VxWorks.

OS IP Stack IPX Stack
DOS LWP or Client32 NOVELL
Win16 WINSOCK NOVELL
Win32 WINSOCK WINSOCK
Linux Native BSD Native BSD
Solaris Native BSD -
HP-UX Native BSD -
SGI Native BSD -
OSF Native BSD -
VAX-VMS UCX -
ALPHA-VMS MULTI-NET -
VxWorks Native BSD -

Table 1: TINE Platform and Protocol support

International Conference on Accelerator and Large Experimental Physics Control Systems

526

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

2.2 Multi-Protocol

TINE supports both IP and IPX ethernet protocols. As
seen from the above table, the IP protocol is general
available across all platforms, whereas IPX is available
primarily on PC systems (DOS, Windows, Linux).
Where necessary, IPX could also be ported to the other
platforms. However, an IPX-stack must be obtained
and installed separately, as it is not in the standard
system kernels for these cases.

2.3 Multi-Architecture

 TINE supports three modes of data exchange, each
of which could be used to define the control system
architecture.
 Client-Server: A traditional data exchange
mechanism available in most control systems is pure,
synchronous client-server data exchange, where a
client makes a request and waits for the completion of
the request.
 Publisher-Subscriber: For many cases, a much better
approach is the publisher-subscriber data exchange.
Here a client (the subscriber) communicates its request
to a server (the publisher) and does not wait for a
response. Instead it expects to receive a notification
within the timeout period. This can be a single
command, or for regular data acquisition it can be a
request for data at periodic intervals or upon change of
data contents. In this format, the server maintains a list
of the clients it has and what they are interested in.
 Producer-Consumer: A third alternative for data
exchange is the Producer-Consumer model. In this
case a server is the producer. It transmits its data via
broadcast on the control system network. Clients (i.e.
consumers) simply listen for the broadcasts. This is
frequently the appropriate data transfer mechanism.
For most control systems, there are certain parameters
of system-wide interest. At HERA for instance, the
Electron and Proton beam-energies, beam-currents,
beam-lifetimes, etc. are made available via system
broadcast at 1 Hz. In the next major release of TINE, a
multi-cast alternative will be offered.

3 MECHANICS

A detailed description of the functionality and
operability of TINE is given in reference [1]. Below
we present a synopsis of some of its features.

3.1 Equipment Modules

 TINE is object-based, where TINE servers contain
one or more equipment modules, which are designed to
present an object-view of the equipment being
controlled. These equipment modules have system-
wide unique export names and contain one or more
instances of the equipment, defined by device names.

Furthermore equipment modules support device
properties, which reflect the equipment operation.
 TINE clients contact a particular device by
specifying the equipment module’s export name and
the device name. The nature of the request is specified
by the device property.
 In Producer-Consumer mode, on the other hand, a
server makes registered data available via broadcast.
In this case a client simply listens.

3.2 API

 TINE offers a common, intuitive Application
Programmers Interface (API) in C across all supported
platforms. In addition, a Visual Basic API is provided
in the Win16 and Win32 environment. Recently, a
JAVA (client-side) API has been made available for
applications on host machines, where JAVA has been
installed.

3.3 Plug-and-Play

 A TINE server registers its address, server name
and its equipment module names with the equipment
name server upon startup. A TINE client can then
query the equipment name server for names and
addresses (and cache the results). As persistent
timeouts have the effect of forcing an address
resolution, one can take a TINE server down, and bring
it up on another machine (and protocol!), without the
necessity of restarting a client.

3.4 Data Exchange

 TINE data requests can consist of up to 64
Kilobytes of data in either direction (client to server
and/or server to client), both in synchronous as well as
asynchronous transfer modes. There are currently 38
defined system data formats, and it is also possible to
specify user-defined structures. The latter must be
registered at both the client and server if automatic
byte-swapping and alignment is to take place.

3.5 Security

 As noted above, TINE servers are registered with
the equipment name server, which constitutes the
control system database. TINE clients on the other
hand are anonymous in this respect. A TINE server is
fundamentally open to access from any client anywhere
on the ethernet. A specific data request can however
carry a WRITE access bit, which can in turn be filtered
against at the server side. Namely a TINE server can
allow WRITE access only to specific users, and/or only
from specific networks, or network addresses.

3.6 Alarm System

 As most alarms ultimately originate during
hardware or service IO operations, it is most natural to

527

locate the first layer of alarm processing directly on the
front-end. A Tine server maintains a local alarm list
containing all relevant information about each alarm.
Clients can then at any time query a server, i.e. the
Local Alarm Server (LAS), as to its alarm state. The
primary client for all local alarm servers is the Central
Alarm Server (CAS), where the next stage of alarm
processing takes place. See reference [2].

3.7 Archive System

 The implementation of TINE at DESY uses an
external archive system, which acquires and provides
both machine data and event-driven post-mortem based
on the TINE protocol. A future release of TINE will
offer a local archive server, whereby short term
histories of selected data can be maintained at the
device server.

3.8 Remote Control

 TINE offers a good set of remote control and restart
of server processes for most platforms.

4 CONCLUSIONS

 The flexibility of TINE has been invaluable in
integrating the HERA front ends into a working
system. Just as important, it has demonstrated a
transparent way to progressively upgrade existing
hardware. Where for practical reasons the latter must
remain on “older” platforms and operating systems,
TINE servers can nonetheless be installed and
maintained. When it becomes practical to “modernize”
front-end elements, this can be achieved piecemeal,
without any blanket restructuring. The implementation
of TINE at DESY is PC-dominated. Although TINE
works fine in say a pure UNIX world, the number of
GUI tools developed for PC consoles running Win32
make the latter (currently) the most attractive platform
on the client-side. On the server-side at DESY, TINE
has also been shown to run on EPICS front ends
offering “bilingual” data access (either via Channel
Access or TINE). It is also planned that the next
release of DOOCS[3] will also offer data exchange via
TINE.

REFERENCES

[1] P.Duval, “The TINE Users Manual”, DESY
internal document.
[2] M.Bieler, et al., “PC Based Alarm System for the
HERA machine”, Proceedings PCaPAC’99, 1999.
[3] G.Gygierl, O.Hensler, and K.Rehlich, “Experience
with an Object Oriented Control System at DESY”,
Proceedings PCaPAC’99, 1999.

528

