
CONTROL SYSTEM FOR CRYRING

E. Westlin, M. Engström, Manne Siegbahn Laboratory, Stockholm, Sweden

Abstract

 A new modular control system architecture using
COM/DCOM for the CRYRING synchrotron/storage ring
in Stockholm is described. The purpose of the system is to
provide access to control system parameters in a generic
sense. The current communication hardware consists of a
CAMAC bus, serial modbus and socket connections.
Client programs communicate with servers using
DCOM[1]. A basic server controls access to one hardware
communication port. Each client connects to one or more
servers.

1 SYSTEM ENVIRONMENT

The CRYRING, a 52 m circumference synchrotron and
storage ring at the Manne Siegbahn Laboratory in
Stockholm, is in operation since 1990 for research mainly
in atomic and molecular physics. The facility includes,
beside the ring, a number of ion sources, an RFQ pre-
accelerator, and beam transport lines to a number of
experimental stations using the low-energy ion beams
directly from the ion sources.
The number of parameters to be handled by the control
system is presently around 300. Out of these, around 250
are of the simple type having a static output value, and
around 50 are of the time-varying type being controlled by
autonomous function generators. The system is expanding
with the accelerator facility. The present data distribution
infrastructure is based on serial CAMAC and local G-64
controllers, but other types of communication and local
control will be used for the future installations.

2 PARAMETER MODEL

2.1 General

Basically a parameter is the object of interest in any
control system. Since this new control system is to replace
an old one with as little inconvenience as possible and
maybe also because it is a good way to structure the
system, the old parameter concept has been kept intact.
The system also has, apart from the old parameters, to
handle new types of equipment the old system didn’t or
couldn’t handle. Because of these requirements a more
generic parameter concept has been adopted, resulting in a
hierarchy of parameter types, where some functionality is
common and other is specific to each parameter type.
Two types of access methods have been implemented, one
structured and fixed, the other unstructured and flexible.

2.2 Structured Access

This method of access uses COM/DCOM versions of the
parameter access methods. This design gives convenient,
efficient and robust access methods. These methods use
scalars, vectors or structures as values. The main
drawback is that they are predefined and can handle only
one type of parameter. So either one squeezes new
parameter types into one already existing, or write new
dedicated interface functions.

2.3 Unstructured Access

 However to facilitate a more generic access to all
parameters, regardless of type, a set of generic access
methods has been developed. These methods have
adopted the concept of a path to a data point. The value to
transport to or from this data point could be of any type
(within certain limits of course) as far as the client/server
communication concerns. It’s the responsibility of the
sender/receiver to serialize/unserialize the data. The basic
building block for data transfer is an encapsulated union
not unlike the VARIANT datatype. To aid the
development of client/server serialization a special
archiver, derived from the MFC CArchive class, is being
developed, enabling a technique similar to the one
deployed in ConSys [2], the new control system of the
ASTRID ring in Aarhus.
 Typically a data point corresponds to an attribute of a
parameter but it could also be an attribute of a module
driver to be used when adjusting the behavior of the
control system. It could also be a more abstract point such
as a ‘SCRIPT’ point as explained below. The basic
requirement on the path is that it should begin with a
parameter or module name, the rest of the path is parsed
by the intended parameter or module implementation, so
this could be quite free formed, similar to an OPC item
definition [3].

3 CLIENT/SERVER COMMUNICATION

3.1 General Operation

The communication is based on DCOM. Clients interested
in some parameter value have two choices of reading
values, either they use the forward on demand interface or
register a subscription and at a later time gets called back
by the server. The callbacks could be conditional as
ordered by the client. The subscription/callback
functionality is in the following referred to as the alarm
system

International Conference on Accelerator and Large Experimental Physics Control Systems

550

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

3.2 Clients

A rather fat client library communicate with one or more
servers. The client hide most of the DCOM system calls.
A database object/server lets the client know which
parameter belongs to which server. The same database
object is also accessed by the servers. End user programs
either link with the client, as is the case with some legacy
programs, or communicate with the client via
ActiveX/OLE.

3.3 Server Structure

The system is built to solve specific needs and there has
been no deliberate attempt to build a system handling
every conceivable situation. However when using the
adopted method, which is influenced by the Unix
STREAMS modular system [4], the situations
encountered have found straightforward solutions.

The basic building block of a server is a Module Driver, a
concept inherited from the old control system. In the new
system this has been made into a more generic term. The
end user client communication over the net via DCOM
connects to a client proxy object in the server process.
Internal to the server is a head module driver which is the
conceptual module driver object. This object persists in
the system database and keeps record of the parameters
accessible through the server. The head module driver in
turn connects to other module drivers implementing
embedded protocols.

A module driver is typically implemented in a separate
DLL. It is accessed through a COM in-process server
interface. Each module driver has a unique name and
several module drivers can be instances of the same COM
class. Which module driver instance to select is
determined with a special login method in the COM
interface. All clients on all levels, also inside a server, are
required to first call this method.

3.4 Server Execution

All access through a hardware port is controlled by a main
work thread, residing in the head module. When a client
makes a request the server converts this into a job object,
similar to a process instance in a regular operating system.
This job object is placed into a queue where the main
work thread, awaken by the system heartbeat or by the
arrival of a new job, later picks it up, executes it, and then
typically wakes the client proxy thread, which can return
the result to the client process.

The queue is actually implemented as two separate
queues, one sleep queue and one run queue. When the
work thread runs, it first checks which jobs in the sleep
queue has timed out, and moves those to the run queue.
Next the work thread takes the highest priority job from
the run queue and executes it. This execution preferably
should not contain any wait states, but it’s up to the
implementation of the job object to exit and return since
there is no preemption. To improve concurrence, job

execution should be short, and if longer jobs are needed,
they could be divided into several invocations of the job.
When the jobs execute method finishes to the main work
thread loop, it returns a code which is interpreted as
follows

JOB_DONE: The job was successfully executed. Signal
the client proxy.
JOB_MORE: A longer job yields to give other jobs some
time to run. The job is reinserted into the run queue.
JOB_SLEEP: A job has a wait state. It is placed in the
sleep queue.
JOB_ABORT: There was an error. Signal the client
proxy.
JOB_BLOCKED: The current job has a wait state and the
module driver can not execute other jobs. This causes the
module driver to enter a blocked state, and to be placed in
the sleep queue of it’s parent module.

3.5 Batch Processing and Server Internal Jobs

The inherent scheduler can be used to implement batch
processing. This has been used to implement caching and
the alarm event handling in the system. It could also be
used to implement a scriptable scheduler. This batch
processor could accept sleep commands and parameter
set/get requests. Using the alarm system one could
implement triggers similar to those found in database
managers.

An example of what a trigger might look like:

When C9CAMSM.ACQ > 100.0 do
C9CAMSM.CCV=0.3

Other module drivers combine several parameters into
new ones. And using the scheduling, closed loop
regulators can be built. An example of this is a simple PID
regulator.

REFERENCES
[1] Randy Abernethy, COM/DCOM Unleashed.

[2] ConSys. http://www.isa.au.dk/consys/

[3] OPC, OLE for Process Control. Data Access
Standard Version 1.0A September 11, 1997.

[4] Dennis M. Ritchie, A Stream Input-Output System,
AT&T Bell Laboratories Technical Journal 63, No. 8
Part 2 (October, 1984).

551

