
JAVA BASED SUPERVISION OF DIGITAL FEEDBACK SYSTEMS IN THE
RFX NUCLEAR FUSION EXPERIMENT

A. Luchetta, G. Manduchi, C. Taliercio, Consorzio RFX, Padova, Italy

Abstract

RFX is a large toroidal machine in the European
Programme for nuclear fusion. Digital active feedback
systems are used in RFX for the control of the
axisymmetric magnetic configuration and for the
correction of local magnetic field errors. A general
scalable distributed architecture has been realised for the
RFX feedback systems. It is based on processor networks
using Digital Signal Processors (Texas Instruments
TMS320C40) mounted on VME racks and connected
either directly or via dedicated fibre optic links. The
software architecture defines a general framework in
which software components can be defined and
configured. Each component is associated with a
processor and is responsible for the overall data flow
management. A transfer function is then associated with
each component in order to define the algorithms
performed by the associated processor.

A graphical tool written in Java provides the overall
handling of the control systems. For each system
component it allows the data flow configuration and the
retrieval of both status and set-up information.

1 INTRODUCTION
RFX uses active digital feedback for the control of

machine axisymmetric electromagnetic parameters, such
as the vertical field required for plasma equilibrium and
the reversed toroidal magnetic field at the wall, and for
the control of local magnetic errors in critical parts of the
magnetic structure. New feedback systems are also under
development in order to enhance the magnetic
configuration and to control the position of wall locked
MHD modes. These various feedback control systems
have different timing requirements, ranging from a
required throughput of 1 to 20 kHz. Moreover they may
have to deal with a large number of input/output signals.
The control of the local field errors, for example, acquires
about 50 analogue input signals and produces 22 output
reference waveforms. In addition, input and output signals
are usually acquired and emitted in different experiment
halls, located at distances up to hundred meters.

As a consequence of the above facts, the architecture of
the feedback systems for RFX has been developed to fulfil
the following requirements [1]:

• Scalability in performance, to allow the
implementation of systems with different timing
and I/O requirements;

• Support for distributed multiprocessor systems
providing data communication over relatively long
distances (hundreds of meters);

• Configurability in both system topology and
algorithm definition.

Since high reliability is required, the decision of using
commercial of the shelf hardware components (COTS)
has been taken in the early stage of the project.

The architecture adopted is modular: a hardware
platform has been selected and a general software
framework has been developed, which allow the
definition of systems as sets of co-operating modules,
performing computation and exchanging data. For each
module, the characteristics of the data flow are specified,
along with the relevant data processing. The configuration
of the data flow is specified in a set of include files, whilst
the definition of the computation is achieved by means of
a dedicate language, which is then parsed in order to
produce optimised C code. Besides making the
development of new systems easier, the use of the same
framework for different applications increases the overall
reliability since new systems re-use tested code.

Though no new C code is written when developing new
systems, their configuration implies however the
definition of many parameters and requires deep
understanding of the framework internal organisation. In
order to make the composition of modules easier, a
graphical tool is currently under way for assisting
developers in the configuration of new systems. The tool,
written in Java, allows the definition of the system
distributed architecture, the data flow and the
computation, producing then the required include files and
generating the C code for computation. The tool also
provides a certain level of supervision by checking
modules against each other in order to highlight possible
inconsistencies in the overall system configuration.

2 ARCHITECTURE OVERVIEW
The modular architecture of the framework influenced

both the choice of the hardware and the development of
the software.

International Conference on Accelerator and Large Experimental Physics Control Systems

266

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

2.1 Hardware Configuration

The main factors that influenced the choice of the
hardware have been performance and distribution.
Consequently, a powerful CPU was needed with the
ability of supporting high-speed communication with
other CPUs. Moreover, it was important to de-couple as
far as possible data flow from computation in order to
achieve performance. For these reasons, we selected the
TMS320C40 floating point Digital Signal Processor
(DSP), which is equipped with 6 independent
communication ports (comports) and 6 DMA controllers
[2]. The CPU boards are mounted on VMEbus racks [3].
A different CPU, acting also as VMEbus controller,
handles the communication with the central control
system of RFX via Local Area Network. It is also used to
load set-up parameters before the experiment pulse and to
collect diagnostic data after the pulse.

Data communication between CPUs mounted on the
same VME rack is performed via comports, while CPUs
mounted on different racks need dedicated high-speed
links. This has been achieved by using reflective
memories connected to fibre optic links, which provide a
memory area in the VME addressing range and ensure
that updates in memory locations are reflected into all
other reflective memories [4].

Comports are also used to move raw data from A/D
Converters to CPUs [5]. The VMEbus is used for
communication between CPUs and reflective memory
boards and also between CPUs and D/A boards.
Communication over the VMEbus represents a possible
bottleneck in the system performance because of the
possible contentions both in the VMEbus and in the
VMEbus Interface chip. Care is therefore required in the
definition of the topology for new systems in order to
minimise data transfer over the VME buses.

2.2 Software Architecture

The framework defines two kinds of software modules:
the pre-elaboration and the control modules. Pre-
elaboration modules acquire raw data from A/Ds, perform
some kind of data pre-processing, and send the results to
one or more control modules. Control modules receive
data from one or more pre-elaboration modules, perform
control computation, and send the results to D/A
converters. Control modules can also send elaborated data
to other control modules, thus allowing the split of the
required computation in a pipeline of communicating
modules. Modules can be freely assigned to CPUs with
the only constraint that one CPU can serve only one
module. Communication between modules is achieved
either through comports or by means of reflective
memory.

By connecting pre-elaboration and control modules it is
possible to build distributed control systems. The simplest
system that can be implemented is composed of one pre-

elaboration module connected with one control module,
but more complex configurations can be defined. For
example, figure 1 illustrates the system used for the
control of local field errors, which defines two pre-
elaboration modules and one control module, mounted on
two VMEbus racks. The first pre-elaboration module runs
on a rack installed in the diagnostics control room: it

acquires 8 input signals, performs data format conversions
and spatial analysis. It then sends the results through the
reflective memory to a control module mounted on a rack
installed in the power supply room. This module receives
also pre-processed data from another pre-elaboration
module mounted on the same board, which acquires and
elaborates 44 input signals produced in the power supply
control room.

The framework carries out all the functions related to
the data movement, but does not make any assumption on
the kind of computation being performed, which is carried
out by a separate piece of code. As control algorithms are
often changed in order to investigate better plasma
configurations, a straightforward implementation of the
computation as a C routine would require the assistance of
software specialists each time the control algorithms are
changed. Moreover, the development of new routines may
introduce programming errors that are usually very hard
to diagnose. For these reasons, we decided to develop a
code generation tool which can accept a high-level
description of the control algorithm, directly expressed in
the Z or Laplace transform domain, and produces
optimised C code, which is then integrated in the
framework at build time.

3 THE CONFIGURATION TOOL
The configuration of the pre-elaboration and control

modules requires the definition of several (10-15)
parameters for each module, such as the comports
involved, the amount of the data being exchanged and the
location of data in the reflective memory. Due to our
experience, the manual definition of these parameters in a
set of include files is not immediate and configuration
errors are common, especially when defining complex
systems composed of several modules.

Figure 1: Example of hardware and software system
architecture

267

For this reason, a graphical tool for system
configuration is currently being developed. Its main tasks
are the following:
• Overall organisation of the system topology:

definition of pre-elaboration and control modules, and
description of the associated data flow. A consistency
check will then validate the configuration;

• Computation description: generation of the
input/output parameters of the transfer functions,
based on the current topology of the system, and
editor support for the detection of syntactical errors in
the descriptive language;

• Run-time system monitoring in order to report the
status of every CPU involved in the control chain
during experiment sessions.

We decided to use Java for the development of the
configuration tool. Java in fact provides a powerful and
flexible environment in which graphical applications can
be quickly developed and, due to their object-oriented
organisation, easily modified. Moreover, the thread and
network supports provided by the Java environment are
useful for the integration of the run-time system
monitoring in the graphical tool.

The configuration tool is essentially a configuration
data repository, and its interface presents information in a
hierarchical fashion as shown in figure 2. At the top level
is the definition of the control systems (e.g. Local Field
Error in fig.1), each involving a set of VME racks (e.g.
Signal Server, Poloidal, Equatorial in fig.1), each
mounting a set of CPUs (CPU_A, CPU_B). At each level
the corresponding information is presented. For example,
at the VME rack level, the IP address of the VME
controller is defined, and this information is shared by all
the underlying CPU configurations, in order to let the
system download the code and acquire CPU parameters.
Most information is defined at CPU level, mainly to
define how data are exchanged between the corresponding
module and the rest of the system.

Once the configuration has been entered, the tool
performs a consistency check in order to detect wrong
configurations, such as different data sizes for two
communicating modules. A further check is done to detect
wrong timing configurations. Pre-elaboration modules, in
fact, acquire and elaborate raw data at the sampling speed
of the corresponding A/D converters. Since the inter-
module data communication protocol requires produced
data to be consumed before a new sample is sent, the
throughput of the control modules depends on the
throughput of their input modules. If, for example, a
control module is configured to receive data from two
modules with different throughputs, the system will
inevitably loose data. Frequency division can be defined
for the output data in each module, making thus possible
the definition of systems with modules working at
different speeds.

Based on the current system topology, the tool provides
also support for the development of the computation

description, by generating templates defining the input
and output parameters for each module.

Once the configuration has been entered and validated,
and the computations have been described in the high
level language, the tool generates the source code and the
include files for each module, builds the executables and
downloads them to the corresponding CPUs.

4 CONCLUSIONS
The development of a graphical configuration tool

represents the last step towards the final implementation
of a powerful and versatile framework for high
demanding control systems. The framework is currently
being used at the RFX experiment for a variety of
feedback controls.

The initial effort in the development of a general-
purpose architecture, rather than providing
straightforward implementations of every single control
system, proved to be a right choice, since it allowed a
dramatic reduction in development and test time for new
control systems.

REFERENCES
[1] A. Luchetta, G. Manduchi, “General Purpose

Architecture for Real-Time Feedback Control in
Nuclear Fusion Experiments”, proceedings 5th IEEE
RTAS, Vancouver, Canada, June 2-4, 1999

[2] Texas Instruments, TMS320C4X User Manual
[3] Blue Wave Systems Ltd., DBV46 TMS320C4X

Carrier Board, Technical Reference Manual
[4] VMIC, VMIVME-5588DMA Reflective Memory

Board Product Manual
[5] Pentland Ltd., VGX User’s Guide

Figure 2: Example of Graphical Configuration Tool

268

