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Abstract

To enhance the first swing stability a RBF neural network
fastvalving controller is proposed. The solution approach is
based on a recent fuzzy fastvalving control scheme.
Disturbances in the PS are used for training the NN
controller. The performance of the RBF neural controller is
simulated in a single machine to an infinite bus power system.

1 INTRODUCTION
Parameters in the electrical power system (PS) change with

time, slowly due to environmental effects or rapidly due to
faults. Thus it is necessary to update the control law with
system changes.

The design of adaptive controllers to improve the
performance of the power system has been a topic of research
for a long time. Neural networks (NN) are a suitable choice
for the control of complex nonlinear plants since the
conventional control methods show limitations in
performance. Due to some desirable features such as local
adjustment of the weights and mathematical tractability, radial
basis function networks (RBF) have recently attracted
considerable attention. When the basis functions are fixed, the
outputs of the networks are linear in the coefficients (the
network weights). Then the results of the theory of linear
systems can be applied to the weight’s adaptation and RBF
net integration in control design.

One of the promising applications of NN in PS is in the
area of power stabilization. Neural network based power
system stabilizers (PSS) [1] have been shown to be very
effective in damping out the PS lower frequency oscillations
and experimentally have been shown to have much better
performance over a conventional PSS. Another important
application of NN controller is for transient stability
enhancement. This is a subject of this paper.

To enhance the first swing stability, a RBF neural network
fastvalving controller is proposed. The solution approach is
based on a recent fuzzy fastvalving control scheme [2]. But
the fuzzy logic control suffers from the disadvantage of
having to obtain fuzzy rules by trial and error and the
requirement of good knowledge of the system behavior. The
learning capabilities of a NN are used to overcome these
problems. The RBF neural structure is selected as it is closely
related to the  fuzzy logic approach.

The objective of the fastvalving is to modulate the
mechanical power input by suitable changing of the valve
position. Thus the output of the RBF NN controller is the

change in valve position. The inputs are the speed error and
the variation in the electric power.

The performance of the RBF neural controller is simulated
in a single machine to be an infinite bus power system.

2  DESCRIPTION OF THE
MATHEMATICAL POWER SYSTEM

MODEL
A simplified dynamic model of the power system is used,

namely a single generator connected through two parallel
transmission lines to a very large network approximated by an
infinite bus. The model is shown below.
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The plant model considered can be written as follows [3]:
Mechanical equations:
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Generator electrical dynamics:
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For details of the other symbols used in the above
equations, the reader can refer to the Ref. [4]. The parameters
of the synchronous generator and the line parameters are
given in the Appendix.

The measurable physical variables are Pe (t), Q (t), If (t)
and ω (t).

The dynamics of the power control loop are given by
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where XE is the steam valve opening, Pc is the input power to
the control system, Pm is the mechanical power input, kT and
kG are gains of the turbine and the speed governor
respectively and the corresponding time constants are given
by TT and TG. The following constraint is placed on the
speed valve opening 0 ≤XE ≤1.

3  THE RBF-NN BASED CONTROLLER

3.1 Radial Basis Function

Radial basis functions share many of the advantages of
conventional feed forward (backpropagation) neural
networks. Both types of networks with enough neurons and
training data can approximate an arbitrary nonlinear function
to a certain level of accuracy. RBF networks offer some other
advantages in comparison with backpropagation networks
[5]. When the basis functions are fixed, the outputs of
networks are linear in the coefficients (the network weights).
Then the results of the theory of linear systems can be applied
to the weights adaptation and RBF networks integration in
control design.

One of the commonly used radial basis function networks
is the Gaussian radial basis function networks (GRBF), which
is expressed by

f NN (x) = ∑ αk Rk (x), k = 1, 2, ... m, 
(6)
Rk (x) = exp [-vk

2 x-ck 2 ],                (7)

where Rk (x) -is the Gaussian activation function for the kth
node, ck - center, vk -width, αê  - amplitude.

The results of [6] indicate that the RBF NN are capable of
on-line approximation of nonlinear function. The
nonlinearities that are investigated are mild (cubic and sine
function).

3.2 RBF - Controller

Generally the transient stability enhancement is
accomplished by means of the following methods [2]:
1. reducing the fault severity
2. reducing the accelerating power.

Under large disturbances the dynamics of the power
system differ widely form the pre-fault steady-state conditions
and conventional PSSs may not be able to maintain the

overall system stability. The feedback linearized controller
may not perform satisfactory when there are limits placed on
the actuators. The disadvantages of nonlinear excitation
control based on feedback linearization are (i) requiring the
machine angles in the case of a multimachine power system
and (ii) it not being able to take care of the variations in the
network parameters.

To enhance first swing stability an RBF neural network
fastvalving controller is suggested.

In this approach an RBF NN is operated in parallel with a
full load frequency adaptive control scheme. The detailed
mathematical foundation of the adaptive control for the power
system can be found in [2] and [7]. The neural network is able
to monitor the system frequency. If there is a condition where
the frequency values are corrupted, or the system is not
sufficiently excited, then the RBF NN will be able to provide
the power set points that may be directly communicated to
those sets that provide system frequency control. The results
of a number of power system simulations are presented.

The network was trained using a gradient descent
procedure. The positions and the spreads of centers were not
trained, because the simulations indicated satisfactory
performance without such a computation-costly training.
They were selected before training.

4  THE DIGITAL SIMULATION RESULTS
One possible strategy to design a controller for a given

non-linear process is to use a model of the process to
determine the proper control action.

The power system used for the simulation is described in
section 2. The model has been implemented in an emulator by
means of SIMULINK on MATLAB.

In the real power system there are always disturbances
which can be used for training the neural network. In this
chapter the following disturbances have been used in the
simulation:

•  three-phase short-circuit is applied at the generator
terminal for 0.1 sec and the fault is switched off afterwards.

•  three phase short circuit is applied at the generator
terminal and cleared after 0.1 sec. The line is kept out of
servise.

•  20% reduction in mechanical power input with
measurement noise – white noise + 0.1sin(10t);

Fig. 1 represents the radial basis functions for the control
signal that is shown on Fig. 2. Fig. 3 shows the response for
the fault sequence 1 and Fig. 4 shows the response when the
system is under more serious disturbance. The RBF
approximation of ω=f(δ) with noise is shown in the Fig. 5 and
the approximation error is in Fig. 6. For noisy data more
neurons are needed in the  RBFN structure to model the
system dynamics. Fig. 7 shows the control for fault 3 and Fig.
8 shows the state variables.

5  CONCLUSION
To optimize the operation of the power system it is

important to reinforce the development and implementation
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of more sophisticated control concepts – improved modelling
of non-ideal electrical and mechanical parts; improved
integrated simulation systems; appropriate control strategies.
Radial basis function neural networks provide an attractive
method for achieving these aims. They are faster to train than
feed forward networks with sigmoidal activation nets. The
RBF model structure is better suited for adaptive control,
since if the basis functions are fixed, the model is linear in the
coefficients. Another advantage of this technique is its
robustness to NN modelling errors.

The RBF network abilities to provide control signal have
been tested by digital simulations.

From the simulation results the following conclusions can
be obtained:

1). The RBF NN approach proposed in this paper is
effective in designing of a non-linear controller.

2). More investigation is needed concerning on-line
training of the RBF NN controller for the power system with
unknown disturbances. The input signal u is constrained to
upper and lower limits as is the rate. It is a current research
area.

3). A possible direction of investigation is in the
partitioning the RBF NN to deal with parts of the dynamics of
the system. The RBF NW based controller can be considered
as only a subnet of the more complex hierarchical
neurocontrol architecture for the power system, and it is a
subject of future work. ∗

APPENDIX
Example system parameters used in simulation studies are

as follows:
ω0 =314.159; D=5.0; H=4.0s; Td0=6.9s; kc=1; xd=1.863;

x’d=0.257; xT=0.127; xL=0.4853; kT = kG = 1; TT = 2; TG
=0.2; R= 0.05 p.u.; f0=50 Hz.

xds=xT+0.5xL+xd; x’ds= xT+0.5xL+x’d; xs= xT+0.5xL;.
The physical limit of the excitation voltage is max

|kcuf(t)|=1.8 p.u.
 The operating point is δ0=72o, Pm0=0.9 p.u., Vt0=1.0

p.u.
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