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Abstract

To enhance the first swing stability a RBF neura network
fastvalving controller is proposed. The solution approach is
based on a recent fuzzy fastvaving control scheme.
Digturbances in the PS are used for training the NN
controller. The performance of the RBF neura controller is
simulated in asingle machine to an infinite bus power system.

1 INTRODUCTION

Parametersin the electrical power system (PS) change with
time, dowly due to environmental effects or rapidly due to
faults. Thus it is necessary to update the control law with
system changes.

The design of adaptive controllers to improve the
performance of the power system has been atopic of research
for along time. Neural networks (NN) are a suitable choice
for the control of complex nonlinear plants since the
conventional  control methods show  limitations in
performance. Due to some desirable features such as loca
adjustment of the weights and mathematical tractability, radial
basis function networks (RBF) have recently attracted
cons derable attention. When the basis functions are fixed, the
outputs of the networks are linear in the coefficients (the
network weights). Then the results of the theory of linear
systems can be applied to the weight's adaptation and RBF
net integration in control design.

One of the promising applications of NN in PSis in the
area of power dabilization. Neurad network based power
system gabilizers (PSS) [1] have been shown to be very
effective in damping out the PS lower frequency oscillations
and experimentally have been shown to have much better
performance over a conventiona PSS. Another important
application of NN controller is for transent <ability
enhancement. Thisisasubject of this paper.

To enhance the first swing stability, a RBF neural network
fastvalving controller is proposed. The solution approach is
based on a recent fuzzy fastvalving control scheme [2]. But
the fuzzy logic control suffers from the disadvantage of
having to obtain fuzzy rules by trid and error and the
requirement of good knowledge of the system behavior. The
learning capabilities of a NN are used to overcome these
problems. The RBF neurd structure is selected asit is closely
related to the fuzzy logic approach.

The objective of the fagtvalving is to modulate the
mechanical power input by suitable changing of the vave
position. Thus the output of the RBF NN controller is the
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change in valve postion. The inputs are the speed error and
the variation in the e ectric power.

The performance of the RBF neurd controller is smulated
in asingle machine to be an infinite bus power system.

2 DESCRIPTION OF THE
MATHEMATICAL POWER SYSTEM
MODEL

A smplified dynamic modd of the power system is used,
namely a single generator connected through two paralle

transmission linesto avery large network approximated by an
infinite bus. The model is shown below.
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Sngle machine-infinite bus model.

The plant model considered can be written asfollows|[3]:
Mechanicd equations:
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For details of the other symbols used in the above
equations, the reader can refer to the Ref. [4]. The parameters
of the synchronous generator and the line parameters are
given in the Appendix.

The measurable physical variables are Pe (t), Q (1), If (t)
and w(t).

The dynamics of the power control loop are given by
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where XE isthe steam valve opening, Pcistheinput power to
the control system, Pm is the mechanical power input, kT and
kG ae gans of the turbine and the speed governor
respectively and the corresponding time constants are given
by TT and TG. The following congraint is placed on the
gpeed valve opening 0 <XE <1.

3 THE RBF-NN BASED CONTROLLER

3.1 Radial Basis Function

Radia basis functions share many of the advantages of
conventiond feed forward (backpropagation) neural
networks. Both types of networks with enough neurons and
training data can approximate an arbitrary nonlinear function
to acertain level of accuracy. RBF networks offer some other
advantages in comparison with backpropagation networks
[5]. When the badss functions are fixed, the outputs of
networks are linear in the coefficients (the network weights).
Then the results of the theory of linear systems can be applied
to the weights adaptation and RBF networks integration in
control design.

One of the commonly used radia basis function networks
isthe Gaussian radiad basis function networks (GRBF), which
isexpressed by

fWN) = SaR(X), k=1,2, .. m,
(6)
Re(x) = exp [-vIx-cF], (7)

where Rk (X) -is the Gaussian activation function for the kth
node, ck - center, vk -width, aé - amplitude.

The results of [6] indicate that the RBF NN are capable of
on-line agpproximation of nonlinear function. The
nonlinearities that are investigated are mild (cubic and sine
function).

3.2 RBF - Controller

Generdlly the trandent dability enhancement s
accomplished by means of the following methods[2]:
1. reducing the fault severity
2. reducing the accelerating power.

Under large disturbances the dynamics of the power
system differ widely form the pre-fault steady-state conditions
and conventiona PSSs may nhot be able to maintain the
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overdl system gability. The feedback linearized controller
may not perform satisfactory when there are limits placed on
the actuators. The disadvantages of nonlinear excitation
control based on feedback linearization are (i) requiring the
machine angles in the case of a multimachine power system
and (ii) it not being able to take care of the variations in the
network parameters.

To enhance first swing stability an RBF neural network
fastvalving controller is suggested.

In this approach an RBF NN is operated in parald with a
full load frequency adaptive control scheme. The detailed
mathemetical foundation of the adaptive control for the power
system can befound in[2] and [7]. The neural network is able
to monitor the system frequency. If there is a condition where
the frequency values are corrupted, or the sysem is not
aufficiently excited, then the RBF NN will be able to provide
the power set points that may be directly communicated to
those sets that provide system frequency control. The results
of anumber of power sysem simulations are presented.

The network was trained usng a gradient descent
procedure. The positions and the spreads of centers were not
trained, because the smulations indicated satisfactory
performance without such a computation-costly training.
They were sdlected before training.

4 THEDIGITAL SSIMULATION RESULTS

One possible dtrategy to design a controller for a given
non-linear process is to use a mode of the process to
determine the proper control action.

The power system used for the simulation is described in
section 2. The model has been implemented in an emulator by
means of SSIMULINK on MATLAB.

In the red power system there are aways disturbances
which can be used for training the neura network. In this
chapter the following disturbances have been used in the
smulation:

» three-phase short-circuit is applied a the generator
termind for 0.1 sec and the fault is switched off afterwards.

» three phase short circuit is applied a the generator
termind and cleared after 0.1 sec. The line is kept out of
svise

e 20% reduction in mechanicd power input with
measurement noise— white noise + 0.1sin(10¢);

Fig. 1 represents the radial basis functions for the control
dgnal that is shown on Fig. 2. Fig. 3 shows the response for
the fault sequence 1 and Fig. 4 shows the response when the
system is under more serious disturbance. The RBF
approximation of w=f(d) with noiseis shown inthe Fig. 5 and
the approximation error is in Fig. 6. For noisy data more
neurons are needed in the RBFN structure to model the
system dynamics. Fig. 7 shows the control for fault 3 and Fig.
8 showsthe state variables.

5 CONCLUSION

To optimize the operation of the power system it is
important to reinforce the development and implementation



of more sophigticated control concepts — improved modelling
of non-ided electricd and mechanicd parts, improved
integrated simulation systems; appropriate control strategies.
Radia basis function neura networks provide an attractive
method for achieving these aims. They are faster to train than
feed forward networks with sigmoidal activation nets. The
RBF mode structure is better suited for adaptive control,
sinceif the basis functions are fixed, the mode! islinear in the
coefficients. Another advantage of this technique is its
robustnessto NN modelling errors.

The RBF network &hilities to provide control signal have
been tested by digital smulations.

From the smulation results the following conclusions can
be obtained:

1). The RBF NN approach proposed in this paper is
effectivein designing of anon-linear controller.

2). More invedigation is needed concerning on-line
training of the RBF NN controller for the power system with
unknown disturbances. The input signa u is congrained to
upper and lower limits as is the rate. It is a current research
area

3). A posshle direction of invedigation is in the
partitioning the RBF NN to deal with parts of the dynamics of
the system. The RBF NW based controller can be consdered
as only a subnet of the more complex hierarchica
neurocontrol architecture for the power system, and it is a
subject of future work. O

APPENDI X

Example system parameters used in Smulation studies are
asfollows:

0 =314.159; D=5.0; H=4.0s, Td0=6.9s; kc=1; xd=1.863;
X'd=0.257; xT=0.127; xL=0.4853; KT = kG =1, TT =2, TG
=0.2; R=0.05 p.u.; f0=50 Hz.

Xds=xT+0.5xL+xd; X’ ds= XT+0.5xL+x’d; xs= xT+0.5xL ;.

The physica limit of the excitation voltage is max
[keuf(t)|=1.8 p.u.

The operating point is 80=720, Pm0=0.9 p.u., Vt0=1.0
p.u.
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