
FUZZY MARKOV MODELING IN AUTOMATIC CONTROL
OF COMPLEX DYNAMIC SYSTEMS

V. Arkov, Institute of Mechanics, Russian Academy of Science, Ufa, Russia
G.G. Kulikov, T.V. Breikin, Ufa State Aviation Technical University, Ufa, Russia

Abstract

A novel modeling technique for automatic control
purposes is discussed. A fuzzy Markov system is
proposed to describe both determined and random
behavior of complex dynamic plants. The main advantage
is its high computational speed. Another benefit of this
method is its flexibility and applicability to both linear
and nonlinear systems.

A controlled Markov chain represents a fuzzy system
with a rectangular membership function. Its output is the
probability distribution, not a variable value. This
approach represents an attempt to overcome the primary
difference between non-randomness of fuzzy sets and
Markov chain theory, which deals with random
phenomena.

1  INTRODUCTION
Most fuzzy logic applications are intended for control and
analysis purposes [1, 2]. Another group of applications is
system state prediction [3]. Conventional fuzzy systems
cannot operate with random phenomena.

Control processes in real-life plants consist of
determined and random elements. Stochastic processes
can be described using a Markov modeling approach [4],
which provides high computational speed because it
utilizes only operations of move and comparison.
However, this approach allows simulation of a limited
number of system states depending on state quantisation.
Furthermore, the transition probability matrix must have
large size to achieve high accuracy of modeling. This
disadvantage can be avoided using a combination of
Markov modeling with fuzzy logic.

In order to extend the application area of both
techniques, a fuzzy Markov modeling approach was
proposed [5]. Fuzzy systems are often referred to as
"universal approximators" [6]. Therefore, fuzzy Markov
systems could be used for smooth nonlinear
approximation of a multidimensional probability density
function. In this case, a Markov model represents a fuzzy
inference system with the transition probability matrix
stored within the rule base.

Recently, Adaptive-Network-Based Fuzzy Inference
Systems (ANFIS) were used for chaotic time series
prediction [3]. Similarly, stochastic time series simulation

can be carried out using fuzzy inference combined with
Markov modeling.

2  MARKOV MODELING
Generalization of the Markov approach to fuzzy systems
is based on the following statements. Consider a dynamic
model described by the nonlinear difference equation

x(t+1) = f{x(t), u(t), e(t)}, (1)
where x(t) is the state vector, u(t) is the input vector, f(x)
is a nonlinear function and e(t) is an independent Gaussian
random vector. This is also a Markov process [7]. The
order of this Markov process depends on the order of
Eq.(1). A controlled Markov chain can be obtained via
state quantisation.

Stochastic processes within a dynamic system can often
be assumed to be stationary and ergodic. In this case, the
Markov chain is homogeneous and its dynamics are
described by the transition probability matrix P. In a high
order case, the matrix represents an appropriately
dimensioned hypercube. A first order model represents a
three-dimensioned matrix

P = {Pijk}, (2)
Pijk =P{x(t+1)=Xj | x(t)=Xi , u(t)=Uk}. (3)
This is the probability of transition from the state Xi to

the state Xj under control Uk. The state probability is
described as
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where X = (X1, ... , Xn) is the vector of interval centers; ρi

is the probability of x being in the i-th interval and ∆ is the
interval length.

Markov simulation represents realization of a random
value with desired distribution. At every time (t+1) the
new value x(t+1) is determined as having probability
density

p(x(t+1)) = f(x(t),u(t)), (5)
where p(x(t+1)) is obtained as the appropriate row of the
transition probability matrix P.

A Monte Carlo procedure is used to simulate such a
system. Generation of a random value with desired
distribution is performed using a uniform distribution
generator and a functional transform. At the first stage,
the current input u(t) and output x(t) are measured. Having
been compared with the interval centers, the input and
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output are transformed to the Markov state {Xj,Uk} via
the following formulas

Xj: j = arg min |x(t)-Xj| , (6)
Uk: k = arg min |u(t)-Uk| . (7)
At the second stage, the vector p is extracted from the

transition probability matrix P using the indices j and k.
The elements of the vector p represent the corresponding
state probabilities pi=P{Xi} for the time instant t+1.

Finally, the obtained distribution is utilized for
generating the random output x(t+1). A transformation
method [8] is used for generating a random number with a
known distribution
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Figure 1: Generation of desired distribution.

A uniform random number y is chosen between 0 and 1,
as shown in Fig.1, and the following transform is applied:

x(t+1)=F-1(y) . (9)
A Markov chain can be considered as a fuzzy system

with a rectangular membership function with no overlap.
The terms Xi, Xj, Uk can be substituted with conventional
linguistic variables like PB, ZO, NB, etc. This paper
focuses on general features of fuzzy Markov modeling.
The results are then to be generalized on numerous
fuzzification and defuzzification techniques.

3  FUZZY MARKOV SIMULATION
The procedure of fuzzy Markov simulation includes four
main stages: fuzzification, inference, defuzzification and
randomization.

Before simulation, general parameters of the fuzzy
system are chosen and the rule base is created from
experimental data. This is usually performed using neural
networks or evolutionary computation methods. Possible
criteria for optimization of a fuzzy Markov system can be
mean square errors of simulated spectral and distribution
properties compared with desired characteristics. In order
to fulfil the criteria, the following degrees of freedom can

be used: the order of the Markov model, the model of
fuzzy inference, the type, number and position of
membership functions.

Figure 2: Contour plots of transition probability matrix.

Consider simulation of a first order SISO (single input
and single output) Markov model. An example of a
transition probability matrix is demonstrated in Fig.1.
Contour plots show two typical sections of the matrix.
Note that the maximum probability density is situated
around a diagonal line representing deterministic dynamic
properties of the system.

Figure 3: Fuzzy Markov system.

A block diagram of fuzzy Markov simulation is shown
in Fig.3. The rule base contains information about the
multidimensional transition probability matrix P.

Firstly, the control input u(t) and output x(t) are
fuzzified using membership functions. The fuzzy values U
and X with their membership degrees are used to infer the
rules from the rule base. Having been extracted, the fuzzy
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rules are aggregated to the fuzzy probability density
function P(X) of the output for the time instant t+1.

After defuzzification, integration and normalization, the
distribution function F(x) is obtained. The normalization
makes the function F(x) be within the interval [0, 1].
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where p(x) is the result of defuzzification. Finally, a
random value with the desired distribution F(x) is
generated using the transformation method from a
uniformly distributed random number. The introduction of
the modified defuzzification and randomization stages
allows fuzzy simulation of a stochastic dynamic system.

4  EXAMPLE
The proposed fuzzy Markov modeling technique was
applied in industrial system testing facilities [5]. The
results of experiments with testing equipment enabled
further investigation of the simulation technique.

Figure 4: Simulated (solid) and demanded distributions
(circles).

Figure 5: Simulated (solid) and demanded spectra
(dashed).

Comparison of basic descriptive properties
demonstrates viability of the proposed technique, as
shown in Fig.4 and Fig.5. Slight differences between
demanded and simulated descriptive properties exist
because of variation in sample estimates. With unlimited
observation time, the estimates converge to demanded
characteristics.

The rule base contains all information about
distribution and spectra in the transition probability
matrix. This simple description becomes possible because
the matrix simultaneously determines two types of system
properties. It directly defines probabilities of transitions
between states and indirectly determines final
probabilities of states of a Markov chain. Conventional
methods for stochastic modeling would require more
complicated techniques to reflect both distribution and
spectral properties.

5  CONCLUSIONS
A fuzzy Markov modeling methodology has been
proposed to extend the application area of fuzzy systems.
It easily describes any form of probability distribution. In
addition to conventional stages of fuzzy modeling,
Markov modeling also includes randomization. This
transforms defuzzified “crisp” probability distribution into
a signal. Application areas for fuzzy Markov modeling
include simulation of complex stochastic systems,
stationarity and stability analysis, systems identification
and optimal control.
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