International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

DEVICE NET IMPLEMENTATION UNDER LINUX
FOR USE IN CONTROL SYSTEM OF A PARTICLE ACCELERATOR

A. Chepurnov, D. Komissarov, F. Nedeoglo, A. Nikolaev
Institute of Nuclear Physics, Moscow State University. 119899, Moscow, Russia

Abstract

A control system (CS) of an «industrial type» for a new
electron linac has been designed. CAN-bus was selected
as well as a basic fieldbus for the front-end level of the CS
and for operator’s console level. To ensure the ability to
use components from other developers, the DeviceNet
high level protocol for CAN-bus has been selected. To
develop the DeviceNet protocol stack Linux has been
chosen as the basic operating system. The DeviceNet
protocol stack has been developed. The stack contains
both Slave’s and Master’s functionality. The following
features are supported today: duplicate MAC ID check,
Predefined Master/Slave Connection Set, Unconnected
Message Manager for dynamic management of
connections. The DeviceNet software package consists of
three components. The first component is a configurable,
scaleable and portable kernel that contains protocol
algorithms, written in pure ANSI C. The second
component is a system driver that provides system
specific functions to the kernel. The third component is a
CAN-bus driver, that provides an interface between the
kernel and a particular CAN-bus controller. Currently our
DeviceNet system has been tested on Intel-Linux
machines equipped with an ISA—-CAN interface card.
Various utilities have been developed to help management
of the DeviceNet network.

1 INTRODUCTION

CAN-bus together with related software and hardware
technologies have become more and more popular for
development of accelerator control systems of various
scales. It is recommended for use in CERN [1]. CAN-bus
is used for interconnection between front-end controllers
at BESSY II to connect smart I/O system [2]; at DESY to
communicate with General Purposes Fieldbus Controllers
[3]; at TRIUMF for distributed power control [4] and in
some other accelerator centers.

A few years ago we selected CAN-bus as a basic
fieldbus. We used it for upgrading our old control system
and for development of new control systems for small-
scale industrial-type electron linacs [5].

The DeviceNet high level protocol for CAN-bus has
been chosen from the three most widely used protocols
(CAL/CANopen, DeviceNet and SDS) which are used
over CAN-bus in industrial and automotive applications.
These protocols are very strongly supported
commercially. Specifications are open and available for

development of compliant devices and application
software. Advantages of the open specification are
obvious as strongly as many manufacturers support this
specification in their products. We like the Linux OS and
prefer to use it in our control system [6].

To our surprise we found no appropriate software
components under Linux OS to support CAN-bus and no
software components to support DeviceNet. So we
decided to develop own software. A DeviceNet compliant
protocol stack and different CAN-bus device drivers were
developed. The stack can be used to provide Slave
capabilities for various types of front-end controllers and
Master capabilities for host personal computer (PC)
running under Linux OS.

1.1 Object Model

Our implementation of DeviceNet is based on the
specification [7]. DeviceNet is defined using object
modeling. The Object Model provides a template to
implement the Attributes (characteristics of object
representation by values), Services (methods or
procedures that an object performs) and Behaviors
(responses of object to particular events). Graphical
representation of an example of the DeviceNet Object
Model is presented on the Figure 1.

|

Applicatio
Object(s)

identity
Object

essage

Assembly fles=ag

Object

DeviceNet

Connection

Device Net Network

Figure 1: The DeviceNet Object Model.

The Identity Object encapsulates information about
a Vendor ID, a Device Type, a Product Type, a version,
a serial number and product name. This object supports
Get_Attribute_Service. It means that data about the object
are accessible from the network. Message Router Object
passes Explicit Messages to other Objects. It is used
internally and is invisible from the DeviceNet network.
The DeviceNet Object encapsulates information about
a Node Address or MAC ID, a baud rate, a Bus-Off
action, an allocation choice, etc. This object supports
Get_Attribute_Service. The purpose of Assembly Objects
is to group different attributes from different Application

388

Objects into a single attribute, which can be moved across
a single connection. Connection Objects represent end
points of virtual connections between nodes on the
DeviceNet network. There are two types of connections
called Explicit Messaging and I/O Messaging. Explicit
Messages are used to activate services of the DeviceNet
Objects. I/0O Messages are used for fast transmission of
I/O data across the DeviceNet network -- the procedure
that is most popular for the front-end level of the control
system. Application Objects implement application
specific behavior of the device, which allows one to
implement control and acquisition algorithms locally.

The model provides an addressing scheme using four
numbers - Node Address (MAC ID), the Object Class
Identifier, the Instance Number, and the Attribute
Number.

Object Model proposed by the DeviceNet specification
is convenient for describing and implementing both
control and data acquisition algorithms for accelerator
control.

1.2 Communication Protocol

The DeviceNet Communication Protocol is based on
the idea of connections. To transfer data a device should
establish a connection with another device. To establish a
connection, each DeviceNet member should include either
an Unconnected Message Manager function (UCMM) or
an Unconnected Port function. UCMM allows one to
create and destroy dynamically Explicit Connections
whereas Unconnected Port allows the Master device to
allocate a predefined set of connections in the Slave
device.

Either UCMM or the Unconnected Port is used to
establish an Explicit Connection, which is used then to
move data from one node to another, or to establish
additional I/0 Connections, which allows moving I/O data
over the network.

2 DESIGN ISSUES

2.1 General Considerations

All the designed software components are not intended
to work in the multithreaded environments.

The DeviceNet protocol stack adheres to the following
principles:

e compatibility with DeviceNet specification;
e portability over various platforms;

¢ real-time capabilities;

e adaptability to possible code modification.

The C (ANSI C) language was chosen as a main
implementation language for this project for several
reasons:

e High level of platform independence of written code,
since C compilers exist for a variety of platforms, from
PC to single-chip microcontrollers.

e DeviceNet Objects can be modeled easily by means
of C structures and functions that manipulate the
structures. Since there is no hierarchy in the DeviceNet
Object Classes relationship, there is no need to use such
Object Oriented languages as C++.

Various versions of the protocol stack software have
been tested on the PC under Linux, on micro-controllers
from Microchip (PIC16C7x) and on DSP from TI
(TMS320C2xx).

Algorithms used in our software have the guaranteed
execution time. It is achieved by means of a technique of
direct indexing and asynchronous loop exiting.

Direct indexing is used in the parts of the code that
operate with data structures contained in arrays. For
example, «connection data structures» and pool of
message identifiers are both represented as arrays of fixed
length. Direct indexing allows us to find any data very
quickly within the guaranteed time period. To simplify
algorithms and to prevent potential memory leaks the
protocol stack software doesn’t use heap memory
allocation.

Asynchronous loop exiting is used in wait cycles when
the program waits for an event to occur. It is useful to
implement Duplication Mac Id Check algorithm, which
must execute every device when it connects to the CAN-
bus. When a node wants to connect to the DeviceNet net it
sends the special message with broadcast properties and
waits for a response. If the response was not received at a
fixed time (1 sec), a node may pass to on-line state and
perform communication over the net.

2.2 Implementation under Linux

To support CAN-bus-ISA adapters under the Linux
kernel a mode driver has been developed [8]. This driver
makes the CAN-bus accessible for user level applications
by means of writing and reading messages to or from
special character device file. The driver can handle up to 4
CAN-bus-ISA adapters simultaneously.

The next implemented component was a Middle Layer
Library providing a simple and efficient interface between
applications and particular CAN-bus driver. The library
makes it possible to implement higher layer software in a
cross-platform way. The Middle Layer Library provides
the same interface for the application layer for all
supported platforms.

The third component was the DeviceNet protocol stack
library. A control application can use services from this
library to become DeviceNet compliant. A draft version of
Master applications based on this library has been tested
successfully but the whole Master’s functionality is not
completed yet. Our implementation of Slave software is
completely functional so with the help of this library we
can develop simple Group 2 Only Slaves and Slaves with
UCMM. Layered structure of the DeviceNet software
system under Linux is shown in Figure 2.

389

Device Net compliant Applications, working

with CAN.

Device Net protocol
stack Library

CAN Middle Layer Library

7= 1f Linux driver for CAN-bus-ISA adapter

Figure 2: Layered structure of the DeviceNet software.

2.3 DeviceNet protocol stack Library

The library consists of the following parts:

o the library kernel;

e a module with system dependent functions;

e a module with interface to CAN-bus.

The structure of the library is presented in Figure3.

This partitioning scheme ensures portability of our
software to platforms with poor resources (micro-
controllers) as well as platforms with rich resources such
as PCs. The Library kernel contains the protocol stack
only and interface to the application program. All
dependencies to particular environments are located in the
two other parts of the library. So if ones kernel module
has been debugged and tested under Linux, it can be used
in DeviceNet compliant devices, developed for other
platforms. To port the library to a new platform the only
thing necessary is to provide system dependent functions
(module called Sysdrv) and interface to CAN-bus (called
Candrv).

The approach of separating generic code from highly
platform specific code has already been proved. For
instance at the beginning of the library development and
testing process non-real CAN-bus has been used. The
CAN-bus emulator for Linux was used to communicate
with nodes over a virtual network. A program which was
tested under the CAN-bus emulator can be transformed to
a program that works with the real CAN-bus just by
relinking its object file with the appropriate Candrv
module, that implements an interface to the real CAN-bus
hardware.

| Library API {infarfaca fo usar coda) |
Library Kernel

| Karnal machanism= |

Candrv: interface to CA
bus [setup(),read_msg(),
write_msgi))

Sysdrv: system specific
functiens (timers, LED)

Figure 3: The structure of the DeviceNet library.

3 MAIN RESULTS

Several software projects have been completed or are at
an usable stage of development as a result of our effort to
create a DeviceNet compatible system. They are: a driver

under Linux for CAN-bus-ISA adapter; a CAN-bus
emulator for Linux, CAN-bus monitors for DOS and
Linux; a low-level configuration utility “dnterm” for
DeviceNet nodes manipulation using Explicit Messaging;
a knob test program and test /O programs. The last two
projects are based on our DeviceNet library which exists
in two variants.

The first variant is for a PC or high-end micro-
controller. It supports Explicit, I/O messaging, UCMM,
Unconnected Port, fragmentation/reassembly, dynamic
management of I/O connections. The Group 2 Only Client
functionality is supported too. The maximum code size of
this version of the library without application code is
approximately 25 Kb.

The second one is for simple microcontrollers such as
PIC16C7x. It supports only Slave functionality and
doesn’t support UCMM. These restrictions simplify
library algorithms so its code fits in 4 Kb ROM and its
variables require only 100 bytes of RAM.

REFERENCES

[1] G. Baribaud, R.Barillere, A.Bland et al
Reccomendations for the Use of Fieldbuses at CERN
in the LHC Era. //Proceedings of the 1997 Int. Conf.
on Accelerator and Large Experimental Physics
Control Systems, p.285 (Beijing, China, November 3-
7, 1997).

[2] J. Bergl, B.Kuner, R. Lange, at al, CAN: a Smart I/O
System for Accelerator Controls- Chanses and
Perspectives. //Proceedings of the 1997 Int. Conf. on
Accelerator and Large Experimental Physics Control
Systems, p.290(Beijing, China, November 3-7, 1997).

[3] A. Matioushin, , A Sytin, M. Clausen at al.
A Configurable RT OS Powered Fieldbus Controller
for Distributed Accelerator Controls. //Proceedings of
the 1997 Int. Conf. on Accelerator and Large
Experimental Physics Control Systems, p.321
(Beijing, China, November 3-7, 1997).

[4] D. Bishop, D. Dale, H. Hui at al. Distributed Power
Supply Control Using CAN-bus //Proceedings of the
1997 Int. Conf. on Accelerator and Large
Experimental Physics Control Systems, p.315
(Beijing, China, November 3-7, 1997).

[5] A. Chepurnov, A. Alimov, D. Ermakov, V.
Shvedunov Control system for new compact electron
linac. // This proceedings.

[6] F. Nedeoglo, D. Komissarov; A.Chepurnov Linux
and RT-Linux for accelerator control - pros and cons,
application and positive experience. //This
proceedings.

[7] DeviceNet Specifications Volume 1, Release 2.0,
Volume 2, Release 2.0.

[8] «The Linux Kernel» David A. Rusling,
Documentation Project, 1997.

Linux

390

