International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

ACCELERATOR CONTROL WITH THE LONWORKSFIELDBUS

M. Smolej, B. Jeram, K. Kenda, I. Kriznar, B. Legak, M. Perko, U. Platise, M. Plesko;
J. Stefan Institute, Ljubljana, Slovenia, http://kgb.ijs.si

Abstract

The device access layer of the control system of the
light source ANKA is amost completely based on
LonWorks. We have developed and produced custom /O
boards that use the LonWorks micro-controller (the
Neuron). The hardware comprises a high-precision 16-bit
DAC/ADC/function generator board, a 40 channel digital
I/O+counter board and a serial interface. The device logic
has been programmed aready at the Neuron level, such
that for example power supplies that are controlled either
through a DAC/ADC board or through a serid interface
look the same on the fieldbus network. The features
include state machine, remote command invocation and
event driven communication with monitors and alarms.
The nodes are automatically configured at start-up time
from a PC-resident, version-controlled database for which
an ftp-like protocol has been developed. Other tools,
which alow for a generic control implementation, are a
network node installation and configuration tool, a node
inspection and management tool and a template compiler,
which allows us to use the same database data on the PC
and on the Neuron.

1 INTRODUCTION

This work represents the 1/0 control sub-unit of the
control system for the light source ANKA[1]. The control
system is based on PCs, so the appropriate solution for
interfacing devices is to use a fieldbus, thereby avoiding
the complexity of VME.

We were looking for an integrated solution, which
would hide all communication details, so that we could
save development efforts. The LonWorks technology
proved as the most optimum currently available solution
for our needs. Its network protocol, which comprisesall 7
layers of the I1SO/OSI moded, reduces network
programming to merely formatting the application level
packets or even only assigning variables. Each node on
the LonWorks network has a special micro-controller —
called the Neuron chip — with built-in networking, 1/0
and application functionality. It is programmed with the
NeuronC programming language which has, besides
normal C syntax, constructs such as declarative syntax for
defining I/O objects, network variables and software
timers, plus exhaustive run-time library for controlling
I/0, network communication, etc. Programming and
network communications are event-driven, by simply
defining tasks which are to be executed by a built-in task
scheduler when the appropriate event occurs.

All these features allowed us to bring much intelligence
to the device levd instead of just mapping 1/O to the PC.

We have thus two main processes on different levels. The
device driver is running on a fieldbus node. It monitors
the physical device, generates alarms, sends asynchronous
value updates, etc.. The device server is running on the
PC. It communicates with al device drivers of the same
type, manages them, and exports the functionality of their
devices as a CORBA server to the rest of the control
system.

21/0 BOARDS

Although many commercial 1/O interface boards were
already available, we decided to develop our own boards.
This decision allowed us to keep the number of different
board types as small as possible. A total of three types
cover all cases of control system’s 1/O requirements. All
our boards have a MC143150 micro-controller MCU (the
Neuron chip) with 24k bytes of SRAM and 32k Bytes of
FLASH memory and they are built in small Europa
format (160x100 mm). Theindividual I/O boards are:
Ariadneis a serial interface board, which supports EIA-
232, EIA-422 and EIA-485 standards at maximum baud-
rate of 115kbps. It hasa 16k bytes long buffers on receive
and transmit lines and an on-board power supply unit that
can source current from 230 V AC line, unregulated DC
7-12V andregulated 5V DC.

Heraisageneric digita 1/0 card with 24 inputs (50 mA),
8 inputs/outputs (50 mA) and 8 solid state rdays (1 A).
All 1/Os are opticaly isolated. Two operating modes are
provided for inputs and input/outputs. There is also a 16-
bit frequency counter with range of 0-100 kHz (absolute
error 1.53 Hz).

Zeus is ahigh precision I/O card with a 16-bit ADC and
DAC, DAC trigger input, and optically isolated digita
channels (8 inputs and 8 outputs). Four analog channels
with a nominal sampling frequency of 1 kHz are
multiplexed to the ADC, which is oversampled at 4 kHz
to ensure 0.3 LSB precision. The DAC operates at a
maximum rate of 10 kHz. An additional on-board
peripheral micro-controller, specialy designed to control
booster and storage ring power supplies includes: function
generator synchronized with DAC trigger input, 32 kb of
memory to buffer DAC function and ADC data, and
peripheral sdf test.

3 SOFTWARE

3.1 Node level

The software controlling the devices in our control
system is “device awar€’ and hides the /O details from
the higher levels. Due to CPU power restrictions of the

401

Neuron chip, this encapsulation is done only to a
reasonable extent, e.g. the conversion to engineering units
from hexadecimal values is done on the PC due to poor
floating-point performance of the Neuron chip.

Our control system includes over 20 different device
types. Therequirement for having devices as intdlligent as
possible increases the amount of device leve
programming. With al that in mind it makes sense to
define a generic APl for device driver implementation,
which would aso include a generic communication
interface. With such APl we simplify devel opment of new
device drivers and aso the development of software,
which communicates with our devices (in our case device
serversrunning on PC).

The device driver APl also alows for implementing
multiple devices of the same or different type on the same
I/0O board, according to our paradigm of “device aware’
fieldbus nodes.

A generic device being part of a control system must be
ableto:

1. receive, process and answer foreign requests

2. propagate monitored parameters and their alarms to
the observer

3. device can dso have a state machine or additional
logic programmed within

With LonWorks, using request/response mechanism for
implementing a simple RPC can easly cover the first
requirement.

The second is achieved by defining proper network
variable types and simply updating the network variables
each time the value is read from the device. These
network variables are called monitors. An adjustable pair
of software timers controls propagation of each monitor
variable. “Max timer” definesthe heartbeat of the monitor
and “min timer” defines minimal time that mugt pass
between two monitor updates. Min timer prevents from
flooding the network if the monitored parameter value is
changing to fast. Some types of parameters can have a
delta threshold defined, which also prevents from too
rapid propagation. Each monitor has a complementary
network variable called aarm, used to communicate
alarms and the valuesresponsible for that alarm.

The monitor and alarm communication is asynchronous
since the propagation is triggered by “timer expiration”,
“changein value’ or “alarm condition” events.

The generic device driver library has been written such
that any device driver can be compiled into a simulation
of the device via a single compiler directive. This is
possible due to the small number of different interface
boards and exactly defined communications interface.
The simulation proved extremey helpful during code
debugging and testing.

3.2 PC side communication

Echelon provides LNS (LonWorks Network Services),
a platform independent, object-oriented architecture for
managing LonWorks networks. Under Windows, there is
an ActiveX wrapper of LNS called LCA (LonWorks
Component Architecture). Unfortunately, the current

version of LCA is too heavily interoperability-oriented.
For this reason and to automate and simplify network
services, it hides some crucial details from the devel oper,
who isthen forced to use the LNS API directly.

At the initial phase of development we used LCA
which helped usto deliver the control system prototypein
arelatively short period. In second phase we imported the
explicit messages functionality and needed the LNS layer
for that. Now, we have completely avoided the LCA and
thus have gained the full control over the network
services and also avoided the overhead of ActiveX.

3.3 Device configuration

In order to eliminate hard-coded constants and thus
make the device driver flexible we download
configuration parameters to the device. For that purpose
we implemented a custom windowed file transfer
protocol, similar to one described in LonWorks
Engineering Bulletin [2]. Using FTP we are also able to
transfer large amounts of data.

Each time the device server is started it checks the node
if it has a valid running application. If not, the executable
path is found in the database and application downloaded
to the node. Node's configuration files are updated if
needed.

The configuration data is stored in a database, which is
used by both device driver and device server. All the data
are stored in engineering units, which must be converted
into raw format before being used by Neuron application.
To simplify device configuration process and to eiminate
occurrence of the same configuration constant in multiple
places within the database or in multiple formats, a
template compiler has been written. This compiler takes
the original header file from the NeuronC application and
compiles it into a template, which is then filled with
database data and converted into a binary version. This
binary version can be downloaded via FTP and copied
directly into the same data structure that was used to
create the template. So we have a generic way for
converting database data into a Neuron application
recognizable format.

The FTP feature was implemented by providing an FTP
server on the PC who can handle up to 256 multiple
transactions, running in concurrent or sequentia mode.
Integrated notification mechanism allows for handling
FTP notification events. Transactions can be started or
aborted locally usng PC APl or remotely by Neuron
application.

A good example of using FTP and template compiler
for configuration is mapping logical devices to I/O pins
on the board. Those maps are part of device's
configuration file, which is generated by template
compiler and downloaded if needed each time the device
server starts.

4 PERFORMANCE

The most demanding case during control of ANKA is
when the maximum number of possible nodes (64) on one

402

fieldbus branch send regular updates of 3 parameters at 1
Hz and smultaneously one parameter of one board is set
and read-out at 20 Hz. This trandates to 212 (3*64+20)
incoming unacknowledged packets and 20
request/response packets per second.

M easurements showed that our system is able to handle
up to 230 incoming unacknowledged packets per second
(which is also the upper limit of “throughput/offered
traffic’ linearity) and can transmit up to 40
request/response packets per second, i.e. more than we
need. Even if the nodes produce too much traffic on the
network, the throughput doesn't fall to zero, but stays at
the level of approx. 190 packety/s. The average packet
sizein thetest setup was 12 bytes.

Our test setup included 11 Neuron nodes all running a
simulated power supply device. Nodes were connected
via 1.25Mbit twisted pair transceivers and Echelon’s
PCNSI card was the inteface to the PC. The
measurements showed that this interface is the bottleneck
for data throughput.

5 CONCLUSIONS

The ANKA control systems is now composed of more
than 200 Neuron nodes. For efficiency and topological
reasons, there are 7 independent branches each connected
to a PC. The fiddbus system runs absolutely stable
without interference, even when the rest of the controlsis
being shut down or restarted.

REFERENCES

[1] M. Dach et al, A Control System Based on Web,
Java, CORBA and Fiddbus Technologies,
PCaPA C99 workshop, Tsukuba, January 1999.

[2] LonWorks Engineering Bulletin, EB176, Echelon
Corporation, November 1996

403

