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Abstract 

The Protein Crystallography Beamline at Berkeley 
Lab’s Advanced Light Source is a facility that is being 
used to solve the structure of proteins. The software that 
is being used to control this beamline uses Java for user 
interface applications which communicate via CORBA 
with workstations that control the beamline hardware. We 
describe the software architecture for the beamline and 
our experiences after two years of operation. 

1  MACROMOLECULAR 
CRYSTALLOGRAPHY FACILITY  

1.1 Background 

The Macromolecular Crystallography Facility (MCF) 
at Berkeley Lab's Advanced Light Source was established 
in 1995 in order to develop a full-service facility for 
protein and large molecule crystallography. Its mission, 
over an extended lifecycle of 10-15 years, is to develop 
and maintain a number of x-ray beamlines and 
experimental stations. The first MCF beamline, BL05.0.2, 
was put into production for experimenters in September 
1997). This beamline will collect multiwavelength 
datasets for as many as 30 samples in one week, 
producing approximately 100 GByte of image data. Two 
additional branchlines (BL05.0.1 and BL05.0.3) are 
currently under construction and more are in the design 
phase. These stations are expected to be in constant use 
and will require very high reliability and minimum time 
to repair. In particular, software upgrades must be 
incremental and provide for rapid installation and testing. 

 

1.2 Beamline BL05.0.2 Instrumentation 

The x-rays from the accelerator are collimated initially 
by the M201 mirror which has both tilt and bend controls. 
The proper energy is then selected by a double crystal 
monochrometer (MONO201) which adjusts the crystal 
Bragg angle and spacing as a function of energy. Tilt and 
roll of the second crystal are also adjustable. The next 
mirror (M202) is supported by a six strut parallel actuator 
(hexapod) giving complete control of tilt, roll and yaw as 
well as 3 degrees of translation. The final main 
component is the sample goniometer with 3 degrees of 

rotation. In addition to these main components are control 
and monitoring of diagnostics such as beam position 
monitors, multiplexors and TV screens. 

2  CONTROL SYSTEM 

2.1 Performance 

The performance requirements for the control system 
were not severe. Performance is limited by the times for 
the mechanical motion of the mirrors and monochrometer 
and by the rate of data collection dominated by the 
readout rate of the CCD detector. The data rate between 
the control computers and the operator console is easily 
handled by the ~1ms/call measured for our current 
CORBA[1] implementation from Sun Microsystems, 
NEO[2]. More severe were the requirements for high 
reliability and minimal programming and engineering 
personnel. 

2.2  Architecture 

The control system architecture is illustrated in figure 
1. This architecture reflects the distributed design which 
was necessary to accommodate both the extended nature 
of the facility and the parallel processing requirements for 
optics control and data acquisition. There are two main 
control issues at the MCF: (1) motion control of mirrors, 
monochrometer, and sample goniostat; and (2) detector 
control and data acquisition.  Since there are relatively 
few total devices (on the order of 10) and relatively few 
people to work on the control system (2), predictably we 
were drawn towards off-the-shelf hardware and software. 

 

We decided to distribute the control across standard 
ethernet (switched 10baseT) to small instrumentation 
servers (Sun SPARCstation-5 computers) which were 
bus-coupled to VME crates which house the motion 
control and beam monitoring modules. The detector 
control and data acquisition is distributed across fast 
ethernet (switched 100BaseT and future 1000BaseT) 
using high performance servers (Sun Ultra-2 and 
Enterprise-3000) and workstations (Sun Ultra-10). This 
decision gave us a good distributed control environment 
with soft real-time capabilities. Fast feedback and 
coordinated sequencing are performed either in hardware 
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or at the local control level. Closed-loop motion control is 
performed within the motion control modules. 
 

                          Figure 1: Architecture 

2.3 Software 

2.3.1 NEO (CORBA) 

The software follows a client/server model with server 
modules, written in C++, running on the instrumentation 
workstations handling the individual instruments. The 
services provided by these modules are available to 
clients, such as operator display screens, which are 
primarily written in Java. Services are located using NEO 
name services. NEO also handles the tricky problems of 
object life-cycle and initialization, server object locking 
when multiple clients are requesting services, object error 
logging and general distributed server and object 
management. We have found these tools to be extremely 
reliable and robust. 

 

2.3.2 Instrument Server Software 

As mentioned previously, server modules were 
developed to run on the instrument server machines to 
control the various instruments. The servant skeleton C++ 
code is auto-generated by the NEO IDL compiler. This 
skeleton basically handles the communication with the 
clients and calls the custom modules that we develop to 
talk to the hardware. Last year we started using the 
ACE[3] development tools to develop these custom 
modules with the objective of making the handler code 
platform independent. 

 

2.3.3 Data Acquisition  Software 

The data acquisition software presented a special 
challenge since it is a large vendor supplied application 
based on socket level communication to coordinate 
distributed processes handling the Detector interface, 
DAQ sequencer, goniostat & monochrometer control, 
data reduction, and data monitoring. For the application 

to communicate with the goniostat and monochrometer, 
we installed hooks enabling CORBA communication to 
these services. 

 

2.3.4 Operator Interface  Software 

Java Applets were developed to allow operator control 
of individual instruments and to scan the monochrometer 
to display energy versus intensity plots. Skeleton Java 
code is produced by a Java IDL compiler for 
communication with the instrument servers while the 
GUI portion was developed using the Symantec Visual 
Café Java development software. Although the 
development software runs on Microsoft Windows, the 
resultant classes run on the operator console’s Solaris 
platform without modification. 

The data collection application is a third party product 
that was modified to operate with our detector.  

 
 

3 SUMMARY 
After two years of operational experience with this 

control system design, we are pleased with the robustness 
and ease of development. The hardware, the Solaris OS, 
the use of workstations to run and develop the 
instrumentation code and the Sun’s implementation of 
CORBA (NEO) have all proven to be good choices in 
these regards. 

 The main limitation that we’ve seen using 
workstations bus-coupled to VME is the slow response 
for handling board level interrupts. For harder real-time 
applications this issue would need to be addressed. 

 Unfortunately, Sun no longer supports its NEO 
product so we are now investigating other CORBA 
implementations looking for similar functionality and 
performance. 
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