
DISTRIBUTED CONTROL OF PROTEIN CRYSTALLOGRAPHY

 BEAMLINE 5.0 USING CORBA *

C. Cork, C. Timossi, Advanced Light Source, Berkeley Lab, USA

* This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Material Sciences Division,
U. S. Department of Energy, under Contract No. DE-AC03-76SF00098

Abstract

The Protein Crystallography Beamline at Berkeley
Lab’s Advanced Light Source is a facility that is being
used to solve the structure of proteins. The software that
is being used to control this beamline uses Java for user
interface applications which communicate via CORBA
with workstations that control the beamline hardware. We
describe the software architecture for the beamline and
our experiences after two years of operation.

1 MACROMOLECULAR
CRYSTALLOGRAPHY FACILITY

1.1 Background

The Macromolecular Crystallography Facility (MCF)
at Berkeley Lab's Advanced Light Source was established
in 1995 in order to develop a full-service facility for
protein and large molecule crystallography. Its mission,
over an extended lifecycle of 10-15 years, is to develop
and maintain a number of x-ray beamlines and
experimental stations. The first MCF beamline, BL05.0.2,
was put into production for experimenters in September
1997). This beamline will collect multiwavelength
datasets for as many as 30 samples in one week,
producing approximately 100 GByte of image data. Two
additional branchlines (BL05.0.1 and BL05.0.3) are
currently under construction and more are in the design
phase. These stations are expected to be in constant use
and will require very high reliability and minimum time
to repair. In particular, software upgrades must be
incremental and provide for rapid installation and testing.

1.2 Beamline BL05.0.2 Instrumentation

The x-rays from the accelerator are collimated initially
by the M201 mirror which has both tilt and bend controls.
The proper energy is then selected by a double crystal
monochrometer (MONO201) which adjusts the crystal
Bragg angle and spacing as a function of energy. Tilt and
roll of the second crystal are also adjustable. The next
mirror (M202) is supported by a six strut parallel actuator
(hexapod) giving complete control of tilt, roll and yaw as
well as 3 degrees of translation. The final main
component is the sample goniometer with 3 degrees of

rotation. In addition to these main components are control
and monitoring of diagnostics such as beam position
monitors, multiplexors and TV screens.

2 CONTROL SYSTEM

2.1 Performance

The performance requirements for the control system
were not severe. Performance is limited by the times for
the mechanical motion of the mirrors and monochrometer
and by the rate of data collection dominated by the
readout rate of the CCD detector. The data rate between
the control computers and the operator console is easily
handled by the ~1ms/call measured for our current
CORBA[1] implementation from Sun Microsystems,
NEO[2]. More severe were the requirements for high
reliability and minimal programming and engineering
personnel.

2.2 Architecture

The control system architecture is illustrated in figure
1. This architecture reflects the distributed design which
was necessary to accommodate both the extended nature
of the facility and the parallel processing requirements for
optics control and data acquisition. There are two main
control issues at the MCF: (1) motion control of mirrors,
monochrometer, and sample goniostat; and (2) detector
control and data acquisition. Since there are relatively
few total devices (on the order of 10) and relatively few
people to work on the control system (2), predictably we
were drawn towards off-the-shelf hardware and software.

We decided to distribute the control across standard
ethernet (switched 10baseT) to small instrumentation
servers (Sun SPARCstation-5 computers) which were
bus-coupled to VME crates which house the motion
control and beam monitoring modules. The detector
control and data acquisition is distributed across fast
ethernet (switched 100BaseT and future 1000BaseT)
using high performance servers (Sun Ultra-2 and
Enterprise-3000) and workstations (Sun Ultra-10). This
decision gave us a good distributed control environment
with soft real-time capabilities. Fast feedback and
coordinated sequencing are performed either in hardware

International Conference on Accelerator and Large Experimental Physics Control Systems

486

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

Instrument
control

Instrument
control

Branchline
VME

CCD
Detector

File
Server

Operator
Console

D i s k
A r r a y

Display

Sbus /VMESbus/VME
Fiber Channel

Catalyst 5000 Switch

100Mbit x4 100Mbit100Mbit10Mbit10Mbit

Beamline 5.0.2
Control System

End Station
VME

Detector
control

or at the local control level. Closed-loop motion control is
performed within the motion control modules.

 Figure 1: Architecture

2.3 Software

2.3.1 NEO (CORBA)

The software follows a client/server model with server
modules, written in C++, running on the instrumentation
workstations handling the individual instruments. The
services provided by these modules are available to
clients, such as operator display screens, which are
primarily written in Java. Services are located using NEO
name services. NEO also handles the tricky problems of
object life-cycle and initialization, server object locking
when multiple clients are requesting services, object error
logging and general distributed server and object
management. We have found these tools to be extremely
reliable and robust.

2.3.2 Instrument Server Software

As mentioned previously, server modules were
developed to run on the instrument server machines to
control the various instruments. The servant skeleton C++
code is auto-generated by the NEO IDL compiler. This
skeleton basically handles the communication with the
clients and calls the custom modules that we develop to
talk to the hardware. Last year we started using the
ACE[3] development tools to develop these custom
modules with the objective of making the handler code
platform independent.

2.3.3 Data Acquisition Software

The data acquisition software presented a special
challenge since it is a large vendor supplied application
based on socket level communication to coordinate
distributed processes handling the Detector interface,
DAQ sequencer, goniostat & monochrometer control,
data reduction, and data monitoring. For the application

to communicate with the goniostat and monochrometer,
we installed hooks enabling CORBA communication to
these services.

2.3.4 Operator Interface Software

Java Applets were developed to allow operator control
of individual instruments and to scan the monochrometer
to display energy versus intensity plots. Skeleton Java
code is produced by a Java IDL compiler for
communication with the instrument servers while the
GUI portion was developed using the Symantec Visual
Café Java development software. Although the
development software runs on Microsoft Windows, the
resultant classes run on the operator console’s Solaris
platform without modification.

The data collection application is a third party product
that was modified to operate with our detector.

3 SUMMARY
After two years of operational experience with this

control system design, we are pleased with the robustness
and ease of development. The hardware, the Solaris OS,
the use of workstations to run and develop the
instrumentation code and the Sun’s implementation of
CORBA (NEO) have all proven to be good choices in
these regards.

 The main limitation that we’ve seen using
workstations bus-coupled to VME is the slow response
for handling board level interrupts. For harder real-time
applications this issue would need to be addressed.

 Unfortunately, Sun no longer supports its NEO
product so we are now investigating other CORBA
implementations looking for similar functionality and
performance.

REFERENCES
[1] SunSoft, “NEO Programming Guide”, 1995, Sun

Microsystems.
[2] Object Management Group, “The Common Object

Request Broker Architecture and Specification”, 2.2
ed., Feb. 1998.

[3] D. C. Schmidt, “ACE: An Object-Oriented
Framework for Developing Distributed
Applications”, Proceedings of the Sixth USENIX
C++ Technical Conference, USENIX Association,
April 1994.

487

