
STANDARDIZATION OF THE DELTA CONTROL SYSTEM

D. Schirmer, E. Kasel, B. Keil and D. Zimoch
Institute for Accelerator Physics and Synchrotron Radiation,

University of Dortmund, Germany

Abstract

DELTA, the 1.5 GeV electron storage ring facility of
the University of Dortmund, dedicated as a facility for
accelerator physics as well as for synchrotron radiation
based experiments, has started routine operation in
summer 1998 [1].

The facility, consisting of a 80 MeV linac, a full energy
booster and the main storage ring, is controlled by a
typical 3 level soft- and hardware architecture with a high
level operator interface (OPI), a real time process level
and a low I/O device control level. Up to now the core of
this system is non standard hand-made, which was
sufficient during the commissioning phase.

Since January 1999 the small control group is working
on the migration to the Experimental Physics and
Industrial Control System (EPICS) [2]. This standard
toolkit provides full support for all hard and software
levels with a high degree of compatibility to other
facilities.

Apart from the basic functionality of EPICS, additional
adaptations to DELTA specific components and
specialized tools are under development. Furthermore, in
order to guarantee intelligent and more automatic ways of
controlling, DSP based fuzzy controller, neuronal
networks as well as expert systems are planned.

1 INTRODUCTION
Up to now DELTA is running with a control software,

that was developed in house. This software uses the
standard topology of modern accelerator control systems.
Furthermore, the introduction of the CAN field bus
system and object oriented programming techniques on
the real time level, now more and more used in
accelerator controls, are included in this system. It fulfils
the requirements of basic machine operation, is stable and
now provides a Tcl/Tk based graphical user interface
(GUI).

The main caveat of the system is, that maintenance and
further developments have to be done in house,
completely, by a control group of 1 to 3 people. These
personnel resources are insufficient to keep track with
standards required for a developing facility. Therefore,
the decision was made to change the system to EPICS, to
introduce a standard and to participate on the progress of
a large community around the world. Some basic parts of

EPICS are already installed and some configurations are
already under test. The system will be introduced within
several steps, covering the superconducting asymmetric
wiggler magnet (SAW) and the linac first.

2 THE MIGRATION PROCESS

2.1 The ‘old’ Control System

Even after intensive bug fixing, optimization and
further consolidation of the present control system, there
are still some problems which will come up when the
demands increase and additional tasks are requested. The
following main problems have been made out:

• no asynchronous message mechanism (only polling)
• inefficient network access due to data polling
• no automatic error handling
• no event synchronisation across the network
• no integrated modeling and simulation tools
• no database for static data management
• insufficient documentation

To overcome some of these essential problems, a long
term changeover to the standard EPICS toolkit is in
progress. This must be a step by step migration because
parallel storage ring operation is required. Furthermore,
to provide a good base for EPICS, some improvements
concerning the hardware are advisable (see Table 1).

Table 1: Upgrade of the DELTA Control System

‘old’ system ‘new’system
Network Backbone bus

10base5/2
Distributed star
100baseTX/FX

OPI HP-UX Linux-PC
Core System Delta specific EPICS R3.13
GUI Motif & Tcl/Tk Tcl/Tk, EPICS

Extensions, ...
Process
Level

VME 68k-CPU
VxWorks 5.1/5.3

VME PPC-604 &
VME 68k-CPU
VxWorks 5.3.1

Field Bus CAN, GPIB, FGs CAN, GPIB, FGs

International Conference on Accelerator and Large Experimental Physics Control Systems

75

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

The 10base5 backbone-bus network will be exchanged
by a distributed star ‘fast ethernet’ network topology,
which guarantees sufficient bandwidth for higher network
traffic. The operator interface (OPI) server as well as
EPICS clients and high level control applications are
running on Linux Pentium-PCs, an inexpensive
alternative to classic UNIX workstations. On the process
level, the 68K CPUs will be replaced by modern
PowerPC CPUs providing 100Mbit high performance
ethernet, modular PMC-Slots and expandable memory up
to 128 MB DRAM. The device I/O-controls supported by
CAN or GPIB field buses and the DELTA specific
arbitrary function generator VME-Cards (FGs) will not
be changed in the near future.

2.2 High Level Software

The high level controls based mainly on ‘Open Source’
[3] software products as Linux, KDE, Tcl/Tk, and the
GNU tools. To be open for future developments further
supplements like Perl/TK, Python, Qt or Java should be
possible. A homogeneous interface for these extensions is
the installation of a uniform middleware like CORBA [5].
CORBA provides a way to build up a rather flexible but
nevertheless standardized distributed client/server model
in the framework of accelerator control systems. The
integration of accelerator physics simulation tools like
TRACY-2 or Goemon [4] as a modeling server could be
an useful example. The CORBA implementation MICO
[6] is under test concerning such opportunities.

Figure 1: Layout of the Control Software Layers.

Fig. 1 shows the software layers from the high
application level like Tcl/Tk operator panels, special
modeling server or Java programs, communicating
directly via the channel access protocol with the
clients/servers running on the IOCs, where finally the
device support handles the hardware access. The object
request broker (ORB) makes horizontal interaction
between object oriented programs possible and provides
an optional gateway to the IOC level.

3 STREAM DEVICE SUPPORT

3.1 EPICS Device Concept

In EPICS, process variables are hold in so called
‘records’. These have a set of ‘fields’, depending on the
record type. One of them, the VAL field, contains the
value of the process variable. Other fields may contain
values that are computed from VAL or compute to VAL.
For output records, the device support reads VAL or one
of the computed values and writes it to the hardware. For
input records, the device support receives a value from the
hardware and stores it into VAL or another field.

Device support code depends on the record type and on
the hardware. While there is a very limited number of
record types, which are almost the same to all EPICS
users, there is plenty of different hardware. This requires a
lot of separate device supports.

3.2 Field Bus Devices

Field busses allow various hardware to be connected to
the controller. From the viewpoint of software
development, one advantage is that the device support is
only dealing with the bus, rather than the hardware device.
Thus, no separate device supports are needed for every
hardware type, but only for every bus type. If one can
assume certain attributes to be common to all bus types,
the separate parts can be made fairly small.

At DELTA, we have several devices that can be
controlled with streams of bytes. Either transmitted over
GPIB, RS232, RS485 or CAN. Since we use CAN to
RS232 and CAN to RS485 converters, the number of
separate bus depending parts is only two. We use the
MicroSys IEC 03 GPIB card, based on a NEC µPD 7210
controller chip, and the esd CAN2 card, based on two
Phillips PCA82C200 controller chips.

3.3 Stream Device Support

The Stream Device Support assumes, that a device can
be controlled with a (bidirectional) stream of bytes,
transmitted over a field bus with a number of logical
channels. Data I/O is controlled by a simple configuration
language, consisting only of the commands ‘in’, ‘out’ and
‘wait’ and of some parameter assignments. We call this a
‘protocol’. The protocol is the only part that depends on
the accessed hardware device. Note that a new device
only needs a new protocol file, but no C coding,
compiling or any knowledge of field bus or EPICS
internals. However, a new type of field bus (or even
another bus controller card) certainly requires all this.

Arguments to ‘in’ and ‘out’ can be ASCII strings or a
sequence of bytes (even zero bytes) or any mixture of
these. Strings can contain format description, well known
from the C functions ‘printf’ and ‘scanf’ and some
additional formats like ‘%b’ (binary notation), ‘%r’ (raw

TCL CORBA ORB

EPICS-Core & Tools
e.g. State Machine

Record Support

GPIB, RS232, RS485, CAN

Device Drivers
Device Support

L
IN

U
X

Epics Interface

High Level ApplicationsAccelerator Model Server

TRACY-2 / Goemon

CA/C

C/C++ Classes

Epics Interface

Java Objects

Java Client & Server

V
xW

or
ks

C
ha

nn
el

 A
cc

es
s

P
ro

to
co

l
C

O
R

B
A

CS

CA/C CA/C

CS
CA/CA/

CS
CA/

IOC-Level

caSaveRestore

Setup files

Epics Interface

Opearator Panels

GUI Editor EMW

EPICS Ext.:
Burt

Alarmhandler
Epics Interface

TCL/TK & Extensions:
Incr. TCL/TK, BLT, ...

100Base TX/FX

Ethernet Network

76

bytes) or ‘%{enum0|enum1|enum2}’ (enumerations). A
format description refers to a record field, depending on
the format and the record type. A formatted input or
single input bytes can also be skipped.

The Stream Device ensures that the logical I/O channel
is locked, thereby preventing mixing of I/O from different
records to the same hardware. Other logical channels, i.e.
other hardware on the same bus, are unaffected from this.

Figure 2: Interactions of the Stream Device Support [7].

4 EMW OPERATOR PANEL EDITOR
EMW (Epics Mega Widgets) is an EPICS GUI builder.

It can be used to develop operator panels for EPICS
control systems without programming. EMW operator
panels are created interactively by dragging and dropping
so called EMW slave widgets on a background widget,
called the master widget. Slave widget properties (I/O
channel names, size, colors, ...) can be edited interactively
and saved in a configuration file that completely describes
a panel. Any EMW master widget can perform generic
operations on sets of slave widgets placed on it, e.g.
switching buttons, scaling analog output widgets,
backup/restore etc (see Fig. 3).

EMW was developed using the object-oriented Tcl/Tk
extension [Itcl]/[Itk]. It can be maintained easily due to
the clean class structure of the software, comparable to
C++, while still providing the rapid development speed of
Tcl/Tk (e.g. compared to C++/Motif). EMW also uses the
extensions BLT2.4 and Tcl-ET (EPICS interface).

Although using Tcl, the speed of EMW e.g. on Linux
PCs is sufficient even for large panels. A panel for 30
power supplies (120 slave widgets (=800 Tk widgets),
several hundred I/O accesses) requires less that 10
seconds startup time on a 350 MHz Linux PC. Scaling of
30 analog output widgets can be done with several Hz,
including display update.

Since no GUI builder will satisfy all users, EMW can
easily be extended without loosing compatibility to the
base version. New master or slave widgets can be
developed very fast, since they inherit methods and
variables from the respective base classes provided by
EMW. The class structure guarantees the same look and
feel (e.g. alarm colors or I/O error handling) to all EMW
operator panels of a control system, and it also defines a
clean interface between the EMW base distribution and
new user-specific extensions of EMW.

Figure 3: EMW demo panel with all available widgets.

EMW is public domain (see [7]). It was developed by a
German company for the SLS linear accelerator, but is
also used at the Dortmunder ELectron Test Accelerator
DELTA. At the moment, novel linac controls based on
EMW, EPICS and the Stream Device Support are already
under test.

5 ACKNOWLEDGMENTS
The authors would like to thank the EPICS community,

particularly the control groups of BESSY and the SLS for
permanent help, inspiring ideas and fruitful discussions.

REFERENCES
[1] D. Nölle et. al. EPAC Stockholm (1998) pp. 611-613
[2] EPICS: NIM A 352, pp. 179-184 (1994)
[3] Open Source: http://www.opensource.org
[4] H. Nishimura, NIM A352, pp. 379-382 (1994)
[5] CORBA: http://www.omg.org
[6] MICO:http://www.vsb.informatik.uni-

frankfurt.de/mico
[7] http://delta.uni-dortmund.de/controls/pub/doc

Record Interface

Bus Interface

Stream Device Support
Kernel

...

output
stream

GPIBCAN

input
field

output
field

input
stream

terminator = NL;
out "meas:freq?";
in "%f";

protocol

mbboDirect

stringin

stringout

longin

longout

ai

ao

bi

bo mbbo

mbbiDirectmbbi

77

