
ConSys – A NEW HIGHLY OBJECT ORIENTED CONTROL SYSTEM

K. T. Nielsen+, J. S. Nielsen, T. Worm,
ISA, Institute for Storage Ring Facilities in Aarhus, University of Aarhus, Denmark

1 ABSTRACT

The ConSys control system1,2 is developed for control
of the storage ring facilities at ISA. A strong object-
oriented approach has been used resulting in a highly
flexible and modular design, where front-end and client
computers have identical core software. All machine
dependent information is stored in a database. The result
is a site and machine independent system that is easy to
maintain. The control system is implemented on PC´s
running Windows NT. It follows the standard model, as
well as the publisher/subscriber model.

2 THE ABSTRACT MODEL

A very limited set of object types defines and
implements the core functionality of the control system:
Devices are the interface between the controlled hardware
and the control system. Data servers register at devices
and serve as data transmitters between the device and the
clients. Before a client can access parameters on the
control system it must send a data request to the system.
The data request must include an address specifying the
parameter. For all data in the control system, a ConSys
data object is used as base class. All data transmitted
between computers by the transport object must be
descendants of the ConSys data object.

2.1 Parameters

An important feature of a control system is the basic
data unit used in system. Many control systems uses a full
device data block as the basic access unit3, resulting in a
large number of objects types to maintain. However, for
simplicity a small number of basic object types is
desirable. These may afterwards be combined into logical
groups reflecting the hardware structure. When the
operators are operating the machine, they tend not to
operate on say a full power supply, but on for example the
current setting. The ConSys control system acts on single
parameters. A parameter may be a current setting on a
magnet, or an on/off bit for a power supply. As the value
of a parameter is transmitted as a descendant object of the
data value object, a great flexibility in the contents of a
parameter is possible. Most parameters are of simple
types, like floating and binary values, but could as well be
a full spectrum from a data acquisition. As a rule the
parameters on the system tend to be as fine-grained as
feasible.

2.2 Addressing

A central concept in the control system is the
generalised address space. As the access method of the
individual hardware devices may vary greatly, the control
system must provide a uniform and flexible way of
accessing parameters. To create a homogeneous control
system it is important to hide the details of parameter
access, and only make use of this knowledge in the
devices. The address object contains the information
needed to access a parameter in the device. The address is
fully qualified; there is no need for more information to
determine the location of a parameter. The base address
object only contains information about the computer and
the device where the parameter is located. Any additional
information is provided by descendant classes.

2.3 Devices

The device object provides the abstraction between the
hardware instrument drivers and the control system. The
device includes the real time database with the parameter

storage needed by the given
device. The base object
defines abstract methods for
reading and writing. An
address object included with
these methods locates the
parameter in the device. The
object furthermore includes
an abstract method for
parameter subscription.
Data servers may call this
method in order to register
for subscription at the
device. The device signals
the registered data servers
whenever data has changed
in the device.

An important concept is a
virtual device - a device
without direct connection to

hardware. In the simplest case, a virtual device is just a
storage device for persistent information. A more
advanced use of the virtual device is intelligent data
handling - that might be automation of operation or as
special conversions between say physical parameters and
direct controls. In the lather case the virtual device utilises
the ability to connect to any parameter on the control
system, just as any other client application on the system.

Application

Client

Data Server

Device

NT Device Driver

n

n

n

n

1

0, 1

0, 1

Transport

1

Figure 1: ConSys Object
relations

International Conference on Accelerator and Large Experimental Physics Control Systems

87

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

2.4 Data Servers

Obtaining and transmitting data to the client is done by
data servers. A data server may register itself at a device.
The device will signal the data server when data may
have changed. It is the responsibility of the data server to
decide whether the data should be sent to the client or not.
When a writing operation takes place, it is the
responsibility of the data server to ship the data to the
device. The data server may also act as an agent for the
client, combining information from one or more devices
on behalf of the client. As the data server does not assume
a connection to a device, a data server may start other
data servers up or act as a client to do complicated tasks.
As opposed to a device, a data server provides no
persistent storage.

To provide the control system with initialisation
information about the data servers a data request object is
used. The data request includes information about the
type of data server to load, and from which library to get
it. The object may also contain a reference to an instance
of the address object. This allows the data server to access
a device. The request also contains a handle that uniquely
identifies data received and transmitted by the data server.
Descendant objects may add additional information used
by the data server, such as criteria for transmission of data
to the client.

2.5 The ConSys Client

Applications interface to the control system through the
ConSys client object. This object provides a small but
powerful set of methods to be used by the client program
to gain access to the control system data. On creation the
client is supplied with a data request. Based on the data
request the client will create all necessary connections.
For most applications only two methods provided by the
client is needed - one for writing data to the system and
one to handle data arriving from the control system.
Internally in ConSys the data servers and devices are
important users of the client object.

2.6 Data objects

The base of all data transmitted in the control system is
the ConSys data object. Although the object can be
transmitted in the system, it is the two descendant objects
that are used. The first descendant object is a message
object, which acts as base object for all messages. The
other descendant is the data value object. This object is
the base object for all parameter information exchanged
in the system. In order to distinguish the origin of the data
in the control system, the data value objects have a unique
handle attribute defined by the client in the request. All
data arriving as a result of a given request is tagged with
this handle. The handle is especially used when the
request results in access to more than one parameter.
Likewise data sent to the control system must include a

handle in order to let the system send the data to the
correct destination.

In figure 1 the relations between the important objects
in ConSys control system are drawn. An application may
create as many client objects as it wants, depending on
the structure of the application. Each client creates a
transport layer, which in turns creates a single data server.
The specific type of the data server depends on the
request specification. The data server may create as many
helper data servers or new client objects as it needs. It
may also connect to a single device. A device may create
as many client objects it wants. If the device is a virtual
device it will not connect to a device driver. If the device
is controlling hardware, it connects to a single device
driver. Figure 1 illustrates the fact that the control system
is its own best client, with data servers and devices acting
freely as clients on the system in parallel with access
from other applications.

3 IMPLEMENTATION

In order to take advantage of the huge amount of good
and cheap software and hardware available for PC‘s,
Windows NT is used as platform for ConSys. To reduce
development time and cost the ConSys only runs on the
Windows NT platform. Note that this is true for front-end
computers as well as client computers. Having chosen the
same operating system on all machines has given a
possibility for a very high degree of symmetry in the
system. In fact it has been possible to use the same core
code on front-ends and clients, which has greatly
increased simplicity, reliability and flexibility of the
system.

To a large extent ConSys uses the possibility to set
process and thread priorities. As the overhead of having
many threads running on a system is insignificant, the
control system uses a large number of threads at many
different priorities to optimise the response time. The
result is that the system can take a very high load before
the user starts to see a significant performance penalty.

3.1 Name space

An identification triplet defines parameters in logically
related groups: machine.name.sub-name. The machine
identifies the accelerator to which the parameter belongs.
The name identifies a group of related parameters, i.e.
parameters controlling a given piece of equipment. The
sub-name identifies the individual parameters for the
piece of equipment. Although the triplet usually reflects
the hardware structure, there are no assumptions made by
the control system.

3.2 Establishing a data connection.

For accessing single parameters, simple requests for
each data type exist. Requests include an address and
information needed to dynamically create the associated

88

data server. To access more than one parameter from a
single client a packet request is implemented. The packet
request has a list of requests. This list can contain request
of any type - for example other packet requests to create
nested structures. The packet request is closely related to
the packet data server. The packet request specifies
creation of a packet data server. When this special data
server is created it splits the request list into separate
packet requests depending on destination front-end. For
each of these single front-end requests a new client is
created. If one of these clients detects a request containing
requests for the local computer it creates the specified
data servers. All other clients contain request for remote
computers. These clients create a transport to the
specified machine and send the request to the ConSys
kernel on that machine. On the remote machine, yet
another packet server is created, now only containing
local requests on the remote machine. This packet server
collects data from the local data servers on the front-end
and routes them back to the original data server on the
calling machine.

ConSys data is transmitted between computers using an
instance of the transport object. The base transport object
only has a few general methods used to handle the
communication. It can be created in two modes - either as
a server or as a client. When a client in ConSys wants
access to a remote computer, it creates an instance of the
transport in client mode with a specification of the name
of the remote computer. During the creation, the transport
object tries to establish a connection to the specified
computer. On a successful connection, ConSys data
objects can now be send trough the transport using its
serialisation operators for reading and writing.

3.3 Database

All machine dependent information for the control
system is stored in an ODBC compliant database – at ISA
Microsoft SQL server 7.0 is used. For performance
reasons the object-oriented structure of ConSys cannot be
represented directly in a relational database, instead
generalised tables with free fields are used.

In general, the database tables used to construct ConSys
objects of a given type contain the attributes of the base
object and a number of generalised fields used for the
construction of descendants to the base object. Helper
tables in the database describe the actual use of the
general fields for a given object. With the helper tables, it
has been possible to develop an object oriented database
editor reflecting the object structure of ConSys.

As an example, a parameter definition in the parameter
table includes the informations needed for the
correspondent address object: An address type field
identifies the address object associated with the
parameter, computer name and device identification
number fields contain information needed to initialise the
base part of the address object. The additional information
needed to initialise the given address object is stored in a
series of general-purpose integer and string fields in the

parameter table. The actual use of these fields is described
in a helper table for the address objects in the control
system.

The parameter table furthermore specifies the
interpretation type of the parameter. The interpretation
type is a combination of three related parameter attributes
- the data type, the conversion type and the display type.
The data type identifies the data objects known by the
control system. Each data object type has at least one
conversion object type and one display type. The ConSys
devices on the front-ends may utilise the conversion
objects to convert between native values and physical
values. The display type gives the client application
knowledge on how to display the parameter data. The
valid combinations of data types, conversion types and
display types are hardwired into the ConSys code and
reflected in the database by a table maintained by the
programmers.

3.4 Dynamic object load

An important mechanism in the control system is the
ability to dynamically create instances of objects. By
supplying the system with the name of the class and the
dynamic link library, the system is able to create an
instance of the class. This method is used to create the
various components of the control system. The transport
layer, database interface, and the devices are created at
start-up of the control system. Likewise the data servers
are dynamically created as specified by the client request.
This ability to dynamically add and configure the system
without re-compilation has proved a great advantage.

4 CONCLUSION

The object-oriented approach has resulted in a highly
flexible and modular design, where front-end and client
computers have identical core software. The limited
number of base objects, the central database for all
machine dependent information and the possibility of
loading and creating object instances dynamically has
lead to a site and machine independent control system
that is easy to maintain.

REFERENCES
 [1] J.S.Nielsen K.T.Nielsen and T.Worm: “ConSys – A

new control system for ASTRID and ELISA”,
TUP46G, Proc. From the 6'th European Particle
Accelerator Conference, EPAC98, Stockholm 1998, p
1679.

[2] www.isa.au.dk/ConSys/
[3] Jie Chen, Graham Heyes, Walt Akers, Danjin Wu,

Wiliam A. Watson III: “CDEV: An Object-Orientated
Class Library for Developing Device Control
Applications”, ICALEPCS 1996 proceedings

+ Now at Scanvaegt International A/S

89

