
A WINDOWS NT DEVICE DRIVER FOR THE PCI TO CAMAC
EXECUTIVE CRATE INTERFACE

K. S. Lee & P. J. Yogendran,
TRIUMF, Vancouver, Canada

Abstract

This paper describes the development and present
status of a Windows NT device driver for the TRIUMF
PCI to CAMAC interface. The TRIUMF 500 MeV
Cyclotron Central Control System currently supports the
PCI to CAMAC interface using OpenVMS for device
access. A project to investigate device access using
Windows NT is underway. The first step in this
investigation has been the development of a Windows NT
device driver. Subsequent work will be necessary to port
existing device access software. In the paper, the software
design, implementation, and performance of the device
driver is discussed.

1 INTRODUCTION
A PCI to CAMAC interface has been developed for the

TRIUMF's Central Control System to provide access to its
multiple executive crate CAMAC system for ALPHA
machines running OpenVMS[1]. Currently the PCI bus is

widely supported on many different platforms including
Intel, Macintosh, PowerPC and ALPHA. A project was

embarked to explore the PCI to CAMAC interface in a
PC running the Windows NT V4.0.

2 SOFTWARE DESIGN
Since the Windows NT system does not allow user-

mode code to directly access I/O hardware device, a
kernel mode driver is written to provide CAMAC access.
It is a collection of routines interacting with the Windows

NT system to provide access to one or more PCI to
CAMAC interface cards. It is a monolithic driver for it
does not need to cooperate with other drivers to achieve
the IO access. It deals with many data structures
containing device information. They are allocated in the
system non-paged memory pool and are referred to as
objects in the Windows NT environment [2].

A CAMAC driver object is created when the I/O
manager loads the CAMAC driver (figure 1). At this time,
the PCI bus is probed and one or more PCI to CAMAC
interface card may be detected.

An interface card is capable of having four executive
crates attached to it. A unique device name is given for
each executive crate found attached to the card. Each
device is represented by a device object and a device

extension object (figure 2). The device object contains a
standard set of data expected by the I/O Manager and the
device extension contains specific device information
such as the device status, hardware port address and
pointer to the I/O buffer.

Due to internal register sharing, only one CAMAC
cycle can happen at one time in a card. To synchronize
device access, a CAMAC controller object and a
controller extension are introduced (figure 3). A CAMAC
device can only start its operation when it is granted
ownership of the CAMAC controller object. Upon
finishing its operation, the CAMAC device would release
the CAMAC controller object so another operation could
go ahead. The CAMAC controller extensions holds
information that is common to all devices such as
common hardware port address.

When a user-mode application performs an I/O
operation to the CAMAC system, it initiates a CAMAC
I/O request. The I/O Manager constructs a single I/O
Request Packet (IRP) as a result[3]. It passes the IRP to
the CAMAC driver dispatch routine. After checking the
validity of the request, the CAMAC start I/O routine is
called.

CAMAC Driver
Object

CAMAC Device
Object

CAMAC Driver
Close Func. Routine

CAMAC Driver
DeviceIOControl Func.

Routine

.

.

.

CAMAC Driver Create
Func. Routine

CAMAC Driver
Start IO

CAMAC Driver
Unload

StartIO Routine

Unload Routine

Create Func.
Routine

Close Func.
Routine

DeviceIOControl
Func. Routine

CMC3

CMC1

CMC2

CMC4

Figure 1 Structure of the CAMAC Driver Object

International Conference on Accelerator and Large Experimental Physics Control Systems

149

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

The interface card handles all CAMAC operations as
programmed I/O. When a CAMAC cycle is finished, the
DONE bit in the POL register is set. As a result, a polling
method is used in the start I/O routine to detect the
change in status. Since a CAMAC cycle typically finishes
in under 10 microseconds, this would not pose serious
performance problems for the Windows NT system.
When the operation is finished, the IRP is released back
to the I/O Manager and the application will be notified
about its completion.

3 IMPLEMENTION
The CAMAC device driver entry points are discussed

in the following:

3.1 CAMAC Driver Entry Routine

In this routine the driver queries the PCI bus to locate
one or more CAMAC interface cards by calling the
HalGetBusData() routine. This routine belongs to a set of
system services in Windows NT called Hardware
Abstraction Layer (HAL) which interacts with the
processor resources and hardware. This layer makes
developing a single device driver on multiple platforms
much easier. Once the driver finds the card,
HalAssignSlotResources() is called to allocate resources
for the interface card. The purpose is to prevent other
drivers from touching the same hardware.

The routine also initializes the driver object by
declaring other driver entry points such as StartIO
routine, Unload routine and Major Function routines.
Since it is necessary to synchronize CAMAC access to
different executive crates, IoCreateController() is called
to create a CAMAC controller object and its Extension
for each interface card found. Four CAMAC devices are
created for every card by calling IoCreateDevice() to
provide access for the four possible executive crates.

The routine also initializes the interface card to a
known state. Since this involves accessing some internal
registers in the card, the KeSynchronizeExecution() is
called to run the code at Device Interrupt Request level
(DIRQL) to prevent any conflicts between the code and
the Interrupt Service routine.

3.2 CAMAC Dispatch Routine

The routine performs data sanity checks before
allowing the IRP to go further. This device driver
supports the dispatching of four major functions to the
CAMAC device: Create, Close, Device Control and Read.
The Create function is mandatory in Windows NT. The
Close function provides CloseHandle() call for the device.
These two functions do not require actual device
operations. So upon their completion, the IRP is released
back to the I/O Manager.

The Device IO Control and the Read functions involve
actual device operation and data transfer. The Device
Control function handles reading and writing to the
internal registers as well as executing the full set of
CAMAC cycles. There are five I/O control codes
corresponding to five different types of operations. The
discussion of the hardware aspect of the interface card
can be found in another paper presented in this
conference[3]. The data transfer method is buffered IO.
The Read function deals with in-coming unsolicited
CAMAC interrupts. Upon completion of these two
functions, the IRP is passed to the Start I/O Routine.

Figure 2 Structure of a CAMAC Device and Device
Extension object

:

:

CAMAC Device Object
(CMC1)

Next CAMAC Device Object

CMC1 Device Extension

:

:

CAMAC Driver Object
CAMAC Driver Object

CMC2 CMC3 CMC4

Region Zero Starting Address

Region One Starting Address

Input / Output Buffer

:

Device Status

CAMAC Controller ObjectCAMAC Controller
Object

Input / Output Buffer

CMC1 Device Extension

Figure 3 Structure of a CAMAC Controller and Controller
Extension object

Interrupting Region

.

.

CAMAC Controller
Extension

.

.

CAMAC Controller
Object

CAMAC
Controller Object

.

.

CAMAC InterruptCAMAC Interrupt
Object

CAMAC Controller
Extension

CMC1
Device Obj

Device
Extension

CMC2
Device Obj

CMC3
Device Obj

CMC4
Device Obj

Device
Extension

Device
Extension

Device
Extension

150

3.3 CAMAC Start I/O Routine

For the Device IO Control function, the Start IO
routine calls IoAllocateController() to gain ownership of
the controller object before performing any actual device
operation. The code that accesses the hardware is done
within a KeSynchronizeExecution(). routine to prevent
conflict with the interrupt service routine. As discussed
earlier, a polling mechanism is used for the programmed
I/O data transfer. This is done by calling
KeStallExecutionProcessor(). If any errors occur during
the I/O operation, the proper error code is set and the
operation is terminated. Regardless whether the operation
is successful, IoFreeController() is called to release the
controller object and the IRP is released back to the I/O
Manager.

3.4 CAMAC Unload Routine

This routine is called by the I/O Manager when a user
requests to stop the driver from the Control Panel’s
Device applet. First the interrupts are disabled from the
CAMAC device and IoDisconnectInterrupt() is called to
remove the CAMAC interrupt object.

For each CAMAC device, IoDeleteSymbolicLink() and
IoDeleteDevice() are called to have the device removed
from the system. After all the devices are removed,
IoDeleteController() is called to remove the CAMAC
controller object. Last, the driver-wide resource is
deallocated by calling IoReportResourceUsage().

4 PERFORMANCE
CAMAC cycle timing data has been collected in three

models of PC running Windows NT V4.0. The result is
shown in Table 1. A CAMAC cycle time includes both
the hardware I/O access time as well as the software setup
time. The software time is expected to scale with the CPU
power. This is confirmed by the results.

A Dynamic Link Library (DLL) has been written to
support standard IEEE calls such as CDREG and CFSA
calls. This will facilitate the future porting of device
access applications to the Windows NT

Table 1: CAMAC Cycle Timing
PC model Read Cycle Write Cycle

166Mhz Pentium 59 usec 56 usec
350Mhz Pentium II 26 usec 23 usec
450Mhz Pentium
III

21 usec 20 usec

5 SUMMARY
A kernel mode device driver has been developed for

the PCI to CAMAC interface card to run under Windows
NT V4.0. The software design and implementation are
discussed and timing data for CAMAC cycle is collected

for different models of PCs. The results show
performance is acceptable and scales with CPU power. A
DLL image was developed to provide CFSA and CDREG
calls. This is the first step in exploring device access in
the Windows NT system.

This CAMAC device driver is developed under
Windows NT V4.0 and can run under Windows NT V5.0
(also known as Windows 2000) without changes.
However, modifications are needed for it to incorporate
new functionality such as plug and play and power-
management. Notable changes are the ones in Driver
Entry Routine and in the handling of new type of IRPs.

REFERENCES
[1] P. Wilmshurst & K. S. Lee, “PCI To CAMAC

Executive Crate Interface”, ICALEPCS 99.
[2] A. Baker, “The Windows NT Device Driver Book: A

Guide for Programmers ”
[3] P. G. Viscarola & W. A. Mason, “Windows NT

Device Driver Development”

151

