
A COMMON SOFTWARE CONFIGURATION MANAGEMENT SYSTEM
FOR CERN SPS AND LEP ACCELERATORS AND TECHNICAL SERVICES

E. Hatziangeli, R. Bartolome, A. Bragg, P. Ninin, J. Patino, H. Sobczak, CERN, Geneva, Switzerland

Abstract

Software configuration management activities are
crucial to assure the integrity of current operational and
the quality of new software either being developed at
CERN or outsourced. The functionality of the present
management system became insufficient with large
maintenance overheads. In order to improve our situation,
a new software configuration management system has
been set up. It is based on Razor  , a commercial tool,
which supports the management of file versions and
operational software releases, along with integrated
problem reporting capabilities. In addition to the basic
tool functionality, automated procedures were custom
made, for the installation and distribution of operational
software. Policies were developed and applied over the
software development life cycle to provide visibility and
control. The system ensures that, at all times, the status
and location of all deliverable versions are known, the
state of shared objects is carefully controlled and
unauthorised changes prevented. It provides a managed
environment for software development, in various
domains of the SPS and LEP CERN accelerators, and the
technical services, automating code and lifecycle
management. This paper outlines the reasons for selecting
the chosen tool, the implementation of the system, the
problems solved and the final goals achieved.

1 BACKGROUND
The present software management system for the

control software of LEP and SPS and Technical services
was developed in CERN in the late ‘80s. Its capabilities
were limited in a basic version management of only the
head and the previous version of all software items in the
repository. With the move to HP-UX, as the main
development platform, and the use of PCs and Power PCs
running LynxOS, the limitations of the present system
were reached.

 The maintenance of the system itself became very
taxing to the software administrators, and extensions of its
functionality were difficult to implement. This, in addition
to the lack of proper procedures to allow the introduction
of externally developed software, had led to the creation
of the project for the implementation of a common
Software Configuration Management (SCM) System.

2 THE PROJECT
The project started with the process of evaluation, in

order to determine the best possible SCM system for our

needs. Therefore, this first phase of the project, was
focused in:
� Identifying and capturing all user requirements [R1].
� Conducting an in depth evaluation of CERN,

commercial and public domain SCM solutions.
� Identified and evaluated the impact of the possible

solutions on our present software development.
� Produce a technical proposal with the evaluation of

the recommended SCM systems [R2].
Once a solution was found, the final phase of the

project was concentrated in the implementation and
deployment of a complete SCM system capable of
supporting, amongst others:
� Present and future in-house or subcontracted software

development.
� Management of Software Problems and Change

Requests, and being able to relate changes to the
issues that drive them.

� Common software repository, which will facilitate
the exchange of software and documentation between
various CERN divisions and groups.

� Software management practices, and proper
development procedures and policies.

� Properly supported SCM service.

3 THE REQUIREMENTS

The project had to provide an integrated solution to the
following requirements:
� Improve the complete software development and

maintenance cycle.
� Make the testing of software easier.
� Provide identification and tracebilily of software

components that are related together.
� Manage consistent product releases in an error-free

manner.
� Automate CM procedures, removing error-prone

steps.
� Ability to understand and evaluate correctly the real

impact of the changes in the Operational software.
Overall, a group of weighted requirements [R1] were

collected from our users, administrators, project and
functional managers, which were addressing usability,
performance and scalability criteria. Once the available
public domain and commercial CM tools were identified,
they were compared against our selection requirements
and the best two products [R2] were chosen for a detailed
technical evaluation.

International Conference on Accelerator and Large Experimental Physics Control Systems

448

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

4 THE SOLUTION
In an effort to provide the best solution, a proper SCM

system should integrate together and automate all CM
processes. The CM solution implemented in this project
provides:
� A set of CM procedures and policies to support our

software development process.
� A Change Management process, by which software

problems, bugs and enhancement requests are
reported to the project responsible team and are
followed through the software lifecycle.

� A commercial tool, named Razor  [R3], which
supports the management of file versions and
operational software releases, along with integrated
problem reporting capabilities.

� A CM administration service and support, for the
users developing new projects and/or maintaining
existing software.

5 THE OVERALL SYSTEM

5.1 Version Management

The checkout/checkin paradigm is used, which provides
versioning of individual components and concurrency
control on components through locking as well as through

branching and merging.

5.2 Release management

A release is a collection of specific versions of software
items (configuration items), that are grouped together for
a reason, i.e., building, testing, prototyping. Once a
configuration of a new product release is ready, the
corresponding versions of the configuration items are
gathered together, tested and released into the operational
area. The configuration and the evolution of our product
releases are kept in the repository. The access of a
complete release is via the checkout/checkin model.

5.3 Change Management

All software problems and enhancement requests are
managed through our software lifecycle.

Software changes are tracked by relating versions of
files or products releases with one or more change
requests. Every request follows a specific lifecycle,
acquiring a signature by the promoter. The promotion of
a request to the next phase is done by the project leader, or
the developer assigned to implement the request. The
lifecycle is tailored to suit the needs of the specific
software development process. All configuration items,
which are checked out, are automatically stamped with
the related change requests, which have achieved the
proper signature level.

5.4 The repository

Our software is organised into several individual, and
physically separate, repositories, in order to achieve
maximum customisation (archive engine, lifecycle, etc.).

Each repository contains software projects related by a
common theme. It is set up using standard default
policies, which are finely tailored to suit the local
development process of each CERN division/group.

5.5 The SCM tool

Razor  [R3] was chosen because it demonstrated a
good all round functionality, including an intuitive GUI
and command line interface, a simple set up and
installation, straight forward migration of our existing
software, minimal learning curve for our users and
administrators, and easy customisation, with a good level
of technical support.

In addition, it demonstrated the ability to scale up, in
order to accommodate larger number of users and data for
the future, as our needs evolve.

5.6 Roles and Responsibilities

The following set of roles was created, and different
responsibilities assigned to each role, according to the
corresponding activities.

The Software Engineers (Developers) are responsible
for developing and maintaining their software products
and creating their own releases. In addition, they respond
to change requests from their clients.

The Librarian is in charge of the installation and
distribution of new versions of public software (libraries)
and operational product releases.

1.41.4 1.51.5 1.61.6 1.71.71.31.3

1.21.2 1.31.3 2.02.0 2.12.1

2.42.4 2.52.5 3.03.0

Set_beam 1.2 Set_beam 1.3

particle.x

magnet.h

energy.data

version 1.0 version 1.1 version 1.2

version 1.2.1.1

version 1.4

version 1.5Reverting

Merging

Parallel development

AlarmsST division

Alarm s/w LHC/VACSL-CO s/w
SL-OP s/w
SL-BI s/w
SPS 2001

User

Repository Login Interface

LHC

TDS
PLC

RADIOM2
TOOLS
UMMI

SL division

449

The Configuration Manager is in charge of the user
training, the development and tuning of the CM
procedures and policies, the repositories and the CM tool.
The configuration manager also ensures that the
procedures for creating, changing, testing and releasing
code are followed properly.

5.7 Access Control

Using the tool’s intrinsic functionality, additional
procedures were developed to regulate access control to
each project in the repository. It is carried out transparent
to the user without the need of passwords.

The underlying principle behind the access control is
that only the software owner and its project team should
have write access to a configuration item, being,
individual files and projects as a whole.

In addition, the developer’s CERN Division/Group is
given access to the project, while the project team is
notified by email, specifying who and what software has
been accessed. This is necessary, in order to allow
emergency bug fixes to take place in the absence of the
project team.

 5.8 The Build and Release Management
Process

Build management is the process of combining
configuration items, which belong to a baseline, together
into composites. It is done in order to construct all or part
of the product deliverables from its components, for the
purpose of prototyping, testing new functionality, or
before releasing a new version of a product into
production. The Build process is an automated process,
which builds the product for every platform it will be
delivered for. Electronic logs are kept to insure tracebility
and completeness of the Build, as well as being able to
compare against previous Builds or reproduce the exact
same Builds in the future.

Release management is the process of releasing a built
and tested system, into the Operational distribution area.
The automated Release process installs and distributes all
deliverables on their corresponding platforms to be used
in operation. All previous operational versions of a
product are available, and automatic version revert
capabilities are offered to the Operations crew.

6 BENEFITS

6.1 Operational Software

� Delivery of consistent operational software.
� Being able to trace and identify any component of an

operational system, as well as the exact version of the
software running in the control room.

� Minimisation of uncontrolled changes of the
operational software.

� Able to access any released version of the operational
software or reverting back to previous working
version, in case of unforeseen problems.

6.2 Development Environment

� Development of thorough policies concerning the
construction, integration and installation of
operational software and the introduction of software
modifications.

� Public software packages, which are commonly used
by the development teams to produce operational
software, change in a controlled manner.

� Easy to debug, since the exact version of the software
concerned can be reproduced.

� Transparent access of software and documentation.

� Software written by external contractors can be
properly synchronised with software written in-house,
since the introduction of new software and of
software changes follows a well-documented
procedure.

7 CONCLUSIONS
An effective SCM solution involves more than buying

the latest and most functional CM tool available in the
market. The most important factor is identifying and
putting the proper SCM processes in place.

In order to define correctly the SCM process that fits
the organisation, one should identify and understand the
existing processes in place, so they can be refined or even
re-implemented, if they are inadequate.

Moreover, in order to introduce SCM activities
successfully in an organisation, there are two important
prerequisites.

Firstly, the management should perceive SCM
functions as key issues in software development and it
should commit to the process.

Secondly, one should identify the hidden cultural
constraints in the target group, as they might have a strong
bearing on the final SCM solution and the success of the
system.

REFERENCES
[1] R. Bartolome, A. Bland, E. Hatziangeli, I. Last, P.

Ninin, "Software Configuration and Management
System User Requirements Document", CERN SL
Note (CO) 97-59.

[2] R. Bartolome, A. Bland, E. Hatziangeli, I. Last, P.
Ninin, H. Sobczak, "Software Configuration and
Management System Project Evaluation Report",
CERN SL Note (CO) 98-22.

[3] Tower Concepts, Inc., “Razor  Release
Management, File Version Control, Problem
Tracking”, Oct 1998.

450

